Mathematical Sciences: A Singular Semilinear Elliptic Boundary Value Problem in Fluid Theory

数学科学:流体理论中的奇异半线性椭圆边值问题

基本信息

  • 批准号:
    9409253
  • 负责人:
  • 金额:
    $ 1.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-07-15 至 1995-12-31
  • 项目状态:
    已结题

项目摘要

940925 Shaker We study a singular semilinear elliptic boundary value problem in a bounded domain in the n dimensional real space. The importance of this problem in scientific applications has been widely recognized (see W ). The motivation for this proposal is three-fold. First we wish to generalize the existing theorems by relaxing the coefficient function in the equation from being Holder continuous to Lipschitz integrable. Second we are interested in possibilities of achieving similar results for systems of equations. A third impetus proceeds from our numerical results on the unit interval and unit square which have shown that multigrid methods can provide an efficient means of solution for reasonable choices of the coefficient function. However, an actual convergence proof for the multigrid Full Approximation Scheme (FAS) is very hard to obtain and the literature is remarkably sparse in the area of founding theory for the FAS method. Our future research into solution methods for the discussed problems will be to fill this gap and to investigate new and perhaps more efficient techniques such as the Multilevel Projection (PML) methods to deal with this type of nonlinear problems. ***
小行星940925 研究了n维真实的空间中有界区域上的奇异半线性椭圆边值问题。这个问题在科学应用中的重要性已被广泛认识(见W)。 提出这一建议的动机有三个方面。 首先,我们希望推广现有的定理放宽系数函数的方程是保持器连续Lipschitz可积。第二,我们感兴趣的可能性,实现类似的结果方程组。第三个动力来自于我们在单位区间和单位平方上的数值结果,这些结果表明多重网格方法可以为合理选择系数函数提供一种有效的求解手段。 然而,一个实际的收敛性证明的多重网格全逼近方案(FAS)是很难获得和文献是非常稀疏的领域建立理论的FAS方法。我们未来的研究解决方法所讨论的问题将填补这一空白,并探讨新的,也许是更有效的技术,如多级投影(PML)的方法来处理这种类型的非线性问题。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aihua Shaker其他文献

Aihua Shaker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aihua Shaker', 18)}}的其他基金

Mathematical Sciences: A Singular Semilinear Elliptic Boundary Value Problem in Fluid Theory
数学科学:流体理论中的奇异半线性椭圆边值问题
  • 批准号:
    9596049
  • 财政年份:
    1994
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: RUI: Minimal Surfaces, Clusters, and Singular Geometry
数学科学:RUI:最小曲面、簇和奇异几何
  • 批准号:
    9625641
  • 财政年份:
    1996
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: "Asymptotic & Singular Perturbation Methods for Bifurcation Problems with Applications"
数学科学:“渐近
  • 批准号:
    9625843
  • 财政年份:
    1996
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Oscillatory Integrals, Singular Integrals, and Their Applications
数学科学:振荡积分、奇异积分及其应用
  • 批准号:
    9622979
  • 财政年份:
    1996
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Singular Integrals and Fourier Integrals
数学科学:奇异积分和傅立叶积分
  • 批准号:
    9531806
  • 财政年份:
    1996
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Oscillatory and Singular Integrals in Analysis, Geometry, and Physics
数学科学:分析、几何和物理中的振荡积分和奇异积分
  • 批准号:
    9505399
  • 财政年份:
    1995
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Singular Control in Mathematical Finance and Related Problems
数学科学:数学金融中的奇异控制及相关问题
  • 批准号:
    9500626
  • 财政年份:
    1995
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Singular Continuous Spectum and Localization Type Effects if Disordered Systems
数学科学:无序系统的奇异连续谱和局域化效应
  • 批准号:
    9501265
  • 财政年份:
    1995
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometry and Topology of Singular Spaces
数学科学:奇异空间的几何和拓扑
  • 批准号:
    9504900
  • 财政年份:
    1995
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Non-Standard Singular Integrals
数学科学:非标准奇异积分
  • 批准号:
    9596111
  • 财政年份:
    1995
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Singular Integrals and Parabolic Partial Differential Equations
数学科学:奇异积分和抛物型偏微分方程
  • 批准号:
    9596112
  • 财政年份:
    1995
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了