Mathematical Sciences: High Order Methods for Time Dependent Equations
数学科学:瞬态方程的高阶方法
基本信息
- 批准号:9500814
- 负责人:
- 金额:$ 16.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-09-01 至 1999-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"High Order Methods for Time Dependent Equations" The project entails research in long term integrations of genuinely time dependent partial differential equations. It involves the development and application of high order finite differences and finite element schemes as well as Spectral methods. The methods to be developed and applied are suitable for problems in several space dimensions with complicated geometries. A major consideration in developing and assessing high order methods for long term integrations is their scalability. Based on the experience gained already in parallelizing ENO codes, a further effort to parallelize spectral and finite element based ENO codes is proposed. The research has two components, theory and applications, those components are linked together. The theory is motivated by the type of applications under investigation and the applications use the theoretical developments. It has been shown that in order to numerically simulate complicated flows that change in time, high order methods are necessary. However those methods, because of their high accuracy, are less robust. The proposed research deals with the issue of the successful implementations of high order methods. This involved theoretical issues (as solving the 100 years old Gibbs Phenomenon) as well as more applied issues. On the applied side, the problem of mixing enhancement by interactions of Shock waves and hydrogen jets will be studied. This entails the simulation of an air shock passing through an hydrogen jet in high Mach numbers. High order methods are mandatory here since the process of interest is the mixing and combustion inside the jets. The current codes, Spectral and ENO are to be modified to handle more general cases. Parallel versions of ENO and spectral methods are being applied now and will be further modified.
“高阶方法的时间依赖方程”该项目需要研究长期的积分真正的时间依赖偏微分方程。它涉及高阶有限差分和有限元格式以及谱方法的发展和应用。待开发和应用的方法适用于具有复杂几何形状的多个空间维度的问题。在开发和评估长期积分的高阶方法时,一个主要考虑因素是它们的可扩展性。基于已经在并行化ENO代码中获得的经验,提出了进一步的努力,并行化基于谱和有限元的ENO代码。本研究由理论和应用两部分组成,这两部分是相互联系的。 该理论的动机是调查中的应用程序的类型和应用程序使用的理论发展。 为了数值模拟随时间变化的复杂流动,高阶方法是必要的。然而,这些方法由于其高精度而不太稳健。所提出的研究涉及高阶方法的成功实现的问题。 这涉及理论问题(例如解决100年前的吉布斯现象)以及更多应用问题。在应用方面,将研究通过激波和氢射流的相互作用来增强混合的问题。这就需要模拟空气冲击波在高马赫数下穿过氢射流。高阶方法在这里是强制性的,因为感兴趣的过程是射流内部的混合和燃烧。目前的代码,光谱和ENO将被修改,以处理更一般的情况。 ENO和谱方法的并行版本现在正在应用,并将进一步修改。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Gottlieb其他文献
Reduced Intensity Transplants Using G-CSF-Mobilized Hemopoietic Cells From Haploidentical Related Donors
- DOI:
10.1016/j.bbmt.2012.11.403 - 发表时间:
2013-02-01 - 期刊:
- 影响因子:
- 作者:
Kenneth Bradstock;John Kwan;Kenneth Micklethwaite;David Gottlieb;Emily Blyth;Gillian Huang;Stephanie Deren;Mark Hertzberg - 通讯作者:
Mark Hertzberg
The physiology of spore germination in fungi
- DOI:
10.1007/bf02873609 - 发表时间:
1950-05-01 - 期刊:
- 影响因子:3.000
- 作者:
David Gottlieb - 通讯作者:
David Gottlieb
Bone marrow adherent layers inhibit apoptosis of acute myeloid leukemia cells.
骨髓粘附层抑制急性髓系白血病细胞的凋亡。
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:2.6
- 作者:
L. Bendall;A. Daniel;K. Kortlepel;David Gottlieb - 通讯作者:
David Gottlieb
P-193 Novel antigens LMA and KMA are expressed on malignant bone marrow plasma cells from patients at all stages of multiple myeloma and in other plasma cell dyscrasias
- DOI:
10.1016/s2152-2650(23)01811-6 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
David Gottlieb;Mary Sartor;Rosanne Dunn - 通讯作者:
Rosanne Dunn
Impact of lenalidomide consolidation on health-related quality of life in chronic lymphocytic leukemia: ancillary study of the phase III CLL6-RESIDUUM trial
- DOI:
10.1186/s12885-025-13792-y - 发表时间:
2025-04-16 - 期刊:
- 影响因子:3.400
- 作者:
Stephane Kroudia Wasse;Sandrine Tienhan Dabakuyo-Yonli;David Gottlieb;Florence Cymbalista;Stephen Mulligan;Marc Maynadie;Thérèse Aurran-Schleinitz - 通讯作者:
Thérèse Aurran-Schleinitz
David Gottlieb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Gottlieb', 18)}}的其他基金
International Conference on Spectral & High Order Methods 1998
国际光谱会议
- 批准号:
9727879 - 财政年份:1997
- 资助金额:
$ 16.98万 - 项目类别:
Standard Grant
Postdoc: Spectral Methods for Complex Geometries
博士后:复杂几何的光谱方法
- 批准号:
9504002 - 财政年份:1995
- 资助金额:
$ 16.98万 - 项目类别:
Standard Grant
In Vitro Differentiation of Embryonal Stem Cells to Neurons
胚胎干细胞向神经元的体外分化
- 批准号:
9408787 - 财政年份:1994
- 资助金额:
$ 16.98万 - 项目类别:
Standard Grant
Mathematical Sciences: High Order Methods for Discontinuous Problems
数学科学:不连续问题的高阶方法
- 批准号:
9211820 - 财政年份:1992
- 资助金额:
$ 16.98万 - 项目类别:
Continuing Grant
Advanced Scientific Computing for the 90's
90 年代的高级科学计算
- 批准号:
9209768 - 财政年份:1992
- 资助金额:
$ 16.98万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Spectral Methods
数学科学:谱方法主题
- 批准号:
8810150 - 财政年份:1988
- 资助金额:
$ 16.98万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: High-Order Mixed Elements on Tetrahedral Meshes for the Stokes Problem
数学科学:斯托克斯问题的四面体网格上的高阶混合单元
- 批准号:
9625907 - 财政年份:1996
- 资助金额:
$ 16.98万 - 项目类别:
Standard Grant
Mathematical Sciences: Second Order Elliptic and Parabolic Differential Equations
数学科学:二阶椭圆和抛物型微分方程
- 批准号:
9623287 - 财政年份:1996
- 资助金额:
$ 16.98万 - 项目类别:
Continuing Grant
Mathematical Sciences: High Order Accurate Numerical Methods for Interface Problems
数学科学:接口问题的高阶精确数值方法
- 批准号:
9626703 - 财政年份:1996
- 资助金额:
$ 16.98万 - 项目类别:
Standard Grant
Mathematical Sciences: Pattern Formation in Higher Order Differential Equations
数学科学:高阶微分方程的模式形成
- 批准号:
9622307 - 财政年份:1996
- 资助金额:
$ 16.98万 - 项目类别:
Standard Grant
Mathematical Sciences: International Conference on Spectraland High Order Methods
数学科学:Spectraland 高阶方法国际会议
- 批准号:
9423049 - 财政年份:1995
- 资助金额:
$ 16.98万 - 项目类别:
Standard Grant
Mathematical Sciences and Computer Research: Higher Order Finite Element Methods and Adaptive Approaches
数学科学和计算机研究:高阶有限元方法和自适应方法
- 批准号:
9596223 - 财政年份:1995
- 资助金额:
$ 16.98万 - 项目类别:
Continuing Grant
Mathematical Sciences: Asymptotic Methods for Order Restricted Inference in Survival Analysis
数学科学:生存分析中阶次限制推理的渐近方法
- 批准号:
9504891 - 财政年份:1995
- 资助金额:
$ 16.98万 - 项目类别:
Standard Grant
Mathematical Sciences: Quasi-Second-Order Methods for Nonsmooth Optimization
数学科学:非光滑优化的准二阶方法
- 批准号:
9402018 - 财政年份:1994
- 资助金额:
$ 16.98万 - 项目类别:
Standard Grant
Mathematical Sciences: Investigations in Order Restricted Inference and Improved Inference Procedures
数学科学:有序限制推理和改进推理程序的研究
- 批准号:
9400476 - 财政年份:1994
- 资助金额:
$ 16.98万 - 项目类别:
Continuing Grant
Mathematical Sciences: Second-Order Optimality Conditions for Problems with Constraints
数学科学:带约束问题的二阶最优性条件
- 批准号:
9404591 - 财政年份:1994
- 资助金额:
$ 16.98万 - 项目类别:
Standard Grant














{{item.name}}会员




