Mathematical Sciences: Algebraic Structure of Quantum Groups
数学科学:量子群的代数结构
基本信息
- 批准号:9501484
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-01 至 1998-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports research on the analysis of the algebraic structure of non-standard quantum groups. The specific aims of the project are: (1) To analyze in detail the algebraic structure of the Cremmer-Gervais quantum groups along the lines of previous work of Hodges and Levasseur on the standard and multi-parameter cases; (2) To study the structure of the associated Poisson groups and Lie bialgebras and to compare this with the structure of the associated quantum group; (3) To construct further families of non-standard quantum groups. This research is in the general area of ring theory. A ring is an algebraic object having both an addition and a multiplication defined on it. Although the additive operation satisfies the commutative law, the multiplicative operation is not required to do so. An example of a ring for which multiplication in not commutative is the collection of nxn matrices over the integers. The study of noncommutative rings has become an important part of algebra because of its increasing significance to other branches of mathematics and physics.
该奖项支持非标准量子群的代数结构分析研究。 本项目的具体目标是:(1)沿着Hodges和Levasseur以前在标准和多参数情况下的工作,详细分析Cremmer-Gervais量子群的代数结构:(2)研究相关Poisson群和李双代数的结构,并与相关量子群的结构进行比较;(3)进一步构造非标准量子群族。 这项研究是在环理论的一般领域。 环是一个代数对象,它同时定义了加法和乘法。虽然加法运算满足交换律,但乘法运算不需要这样做。 一个环的例子是整数上的n × n矩阵的集合,其中乘法是不可交换的。 非交换环的研究已经成为代数学的一个重要组成部分,因为它对数学和物理学的其他分支越来越重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Hodges其他文献
Thermal gradients integrated on-chip by passive radiative cooling of silicon nitride nanomechanical resonators
通过氮化硅纳米机械谐振器的被动辐射冷却在芯片上集成热梯度
- DOI:
10.1016/j.applthermaleng.2023.120561 - 发表时间:
2023-07-05 - 期刊:
- 影响因子:6.900
- 作者:
Alexandre Bouchard;Timothy Hodges;Michel Stephan;Lixue Wu;Triantafillos Koukoulas;Richard G. Green;Raphael St-Gelais - 通讯作者:
Raphael St-Gelais
Timothy Hodges的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Hodges', 18)}}的其他基金
Mathematical Sciences: Structure and K-Theory of Group Ringsand Rings of Differential Operators
数学科学:群环和微分算子环的结构和K理论
- 批准号:
8602291 - 财政年份:1986
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences -- Topological and algebraic regularity properties of nuclear C*-algebras
NSF/CBMS 数学科学区域会议 -- 核 C* 代数的拓扑和代数正则性性质
- 批准号:
1138022 - 财政年份:2011
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences: Algebraic Topology in Applied Mathematics; Summer 2009, Cleveland, OH
CBMS 数学科学区域会议:应用数学中的代数拓扑;
- 批准号:
0834140 - 财政年份:2009
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Algebraic and Topological Combinatorics of Ordered Sets - 18 - 22 July, 2005
CBMS 数学科学区域会议 - 有序集的代数和拓扑组合 - 2005 年 7 月 18 - 22 日
- 批准号:
0434402 - 财政年份:2005
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in Mathematical Sciences--'Algebraic Combinatorics'- June 4, 2001 - June 8, 2001
NSF/CBMS 数学科学地区会议 - “代数组合”- 2001 年 6 月 4 日 - 2001 年 6 月 8 日
- 批准号:
0085656 - 财政年份:2001
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Algebraic and Analytic Methods in the Mathematical Sciences
数学科学中的代数和分析方法
- 批准号:
9912192 - 财政年份:2000
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Mathematical Sciences: L-Independence in Arithmetic Algebraic Geometry
数学科学:算术代数几何中的 L 独立性
- 批准号:
9796240 - 财政年份:1997
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Transformation Groups
数学科学:代数变换群
- 批准号:
9701200 - 财政年份:1997
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Mathematical Sciences/GIG: Southwest Center for Arithmetical Algebraic Geometry
数学科学/GIG:西南算术代数几何中心
- 批准号:
9709662 - 财政年份:1997
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic Cycles, Group Schemes, K-Theory and Connections between Stable Homotopy and Group Cohomology
数学科学:代数环、群方案、K 理论以及稳定同伦与群上同调之间的联系
- 批准号:
9704794 - 财政年份:1997
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Methods in Systems Theory
数学科学:系统论中的代数方法
- 批准号:
9610389 - 财政年份:1997
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant