Mathematical Sciences: Oscillatory Integrals and ConvolutionOperators

数学科学:振荡积分和卷积算子

基本信息

  • 批准号:
    9530537
  • 负责人:
  • 金额:
    $ 4.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-08-01 至 1999-07-31
  • 项目状态:
    已结题

项目摘要

Abstract Oberlin This is a project in Fourier analysis. It is concerned with problems related to certain operators and to certain oscillatory integrals which are naturally associated with those operators. The operators are given by convolution with measures on curves in Euclidean spaces. In the simplest case the oscillatory integrals are one-dimensional integrals with an exponential integrand having polynomial phase function. These integrals arise naturally as the Fourier transforms of the measures defining the convolution operators. The questions of interest here have been fairly well understood in dimensions 2 and 3 since about 1985. The investigator has recently had some success with these problems in 4 dimensions. The goal of this project is to continue that work by extending the range and scope of the methods employed in dimension 4. Pure mathematics is traditionally divided into the areas of analysis, algebra, and topology. This is a project in analysis. Very roughly, the roots of analysis are to be found in calculus. (The roots of algebra are found in high school algebra, and those of topology are in geometry.) The objects of study in calculus are functions, derivatives, and integrals. The derivative of a function is an extremely important tool- when it exists. But not all functions have derivatives. The existence of a function's derivative is tied up with the idea of that function's smoothness. A smoothing operator is a device which transforms a function into a closely related but smoother function. (Applications of mathematics to the real world, e.g., problems in fluid mechanics like airplane design, almost always make the tacit assumption that the functions involved possess a certain degree of smoothness. When, as is often the case, the actual function is not that smooth, it must first be passed through a smoothing operator. Smoothing operators are also extremely useful in communications theory, where they are associated with the processes of noise removal and image enhan cement.) Most smoothing operators are of a type known as convolution operators. The motivation for this project is the desire to understand better certain of these convolution operators. The oscillatory integrals of the title are just tools which aid in this understanding.
这是傅立叶分析的一个项目。它涉及与某些算子有关的问题,以及与这些算子自然相关的某些振荡积分。该算子由欧氏空间中曲线上的测度卷积而成。在最简单的情况下,振荡积分是具有多项式相函数的指数被积的一维积分。当定义卷积算子的度量的傅里叶变换时,这些积分自然出现。自1985年以来,这里感兴趣的问题已经在维度2和维度3中得到了相当好的理解。这位研究者最近在4个维度上对这些问题取得了一些成功。这个项目的目标是通过扩大在维度4中使用的方法的范围和范围来继续这项工作。传统上,纯数学分为分析、代数和拓扑学领域。这是一个正在分析的项目。粗略地说,分析的根源在于微积分。(代数的根在高中代数中,拓扑学的根在几何中。)微积分的研究对象是函数、导数和积分。函数的导数是一个极其重要的工具--如果它存在的话。但并不是所有的函数都有导数。函数导数的存在与该函数的光滑性有关。平滑运算符是一种将函数转换为密切相关但更平滑的函数的装置。(数学在现实世界中的应用,例如流体力学中的问题,如飞机设计,几乎总是默认所涉及的函数具有一定程度的光滑性。通常情况下,当实际函数不是那么光滑时,必须首先传递一个平滑运算符。平滑运算符在通信理论中也非常有用,在通信理论中,它们与噪声去除和图像增强粘合过程有关。)大多数平滑运算符都属于一种称为卷积运算符的类型。这个项目的动机是希望更好地了解这些卷积算子中的某些。标题的振荡积分只是帮助理解的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Oberlin其他文献

PD25-11 TURBT: THE EFFECT OF OPERATIVE DURATION ON POST-OPERATIVE COMPLICATIONS IN 10,526 PATIENTS
  • DOI:
    10.1016/j.juro.2015.02.1660
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Matulewicz;Vidit Sharma;Barry McGuire;Daniel Oberlin;John Kim;Kent Perry;Robert Nadler
  • 通讯作者:
    Robert Nadler
MP11-20 DIFFERENCES IN CASE LOGS OF UROLOGISTS BY PROCEDURE AND SPECIALTY ALONG GENDER LINES
  • DOI:
    10.1016/j.juro.2014.02.435
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Laurie Bachrach;Daniel Oberlin;Sarah Flury
  • 通讯作者:
    Sarah Flury
PD8-06 PERIOPERATIVE BLOOD TRANSFUSIONS AS A RISK FACTOR FOR INFECTIOUS COMPLICATIONS AFTER UROLOGIC SURGERY
  • DOI:
    10.1016/j.juro.2015.02.921
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Matulewicz;Daniel Oberlin;Irene Helenowski;Borko Jovanovic;Shilajit Kundu
  • 通讯作者:
    Shilajit Kundu
PD17-05 MANAGEMENT OF CLINICAL STAGE I SEMINOMA: HEADED IN THE RIGHT DIRECTION, BUT FAST ENOUGH?
  • DOI:
    10.1016/j.juro.2016.02.1170
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Matulewicz;Daniel Oberlin;Joel Sheinfeld;Joshua Meeks
  • 通讯作者:
    Joshua Meeks
Application of a Fourier Restriction Theorem to Certain Families of Projections in $${\mathbb {R}}^3$$
  • DOI:
    10.1007/s12220-014-9480-7
  • 发表时间:
    2014-03-22
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Daniel Oberlin;Richard Oberlin
  • 通讯作者:
    Richard Oberlin

Daniel Oberlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Oberlin', 18)}}的其他基金

Some Problems in Analysis
分析中的一些问题
  • 批准号:
    1160680
  • 财政年份:
    2012
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Some Variants of the Kakeya Problem
挂屋问题的一些变体
  • 批准号:
    0552041
  • 财政年份:
    2006
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Affinely Invariant Measures
谐波分析和仿射不变测量
  • 批准号:
    9986804
  • 财政年份:
    2000
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Convolution Estimates and Sobolev Inequalities
数学科学:卷积估计和索博列夫不等式
  • 批准号:
    8922379
  • 财政年份:
    1990
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Investigations in Analysis
数学科学:分析研究
  • 批准号:
    8707044
  • 财政年份:
    1987
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Investigations in Analysis
数学科学:分析研究
  • 批准号:
    8219327
  • 财政年份:
    1983
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Investigations in Harmonic Analysis
谐波分析研究
  • 批准号:
    7827602
  • 财政年份:
    1979
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Harmonic Analysis on Some Non Locally Convex Function Spaces
一些非局部凸函数空间的调和分析
  • 批准号:
    7602267
  • 财政年份:
    1976
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Oscillatory Integrals, Singular Integrals, and Their Applications
数学科学:振荡积分、奇异积分及其应用
  • 批准号:
    9622979
  • 财政年份:
    1996
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Oscillatory and Singular Integrals in Analysis, Geometry, and Physics
数学科学:分析、几何和物理中的振荡积分和奇异积分
  • 批准号:
    9505399
  • 财政年份:
    1995
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Oscillatory Integrals in Harmonic Analysis and Their Applications
数学科学:调和分析中的振荡积分及其应用
  • 批准号:
    9401277
  • 财政年份:
    1994
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Error bounds for asymptotic expansions of some multivariate oscillatory integrals; to support visit by L. Hsu, Inst. of Mathematical Sciences, Dalian University of Technology, Dalian, China
一些多元振荡积分渐近展开的误差界;
  • 批准号:
    147541-1992
  • 财政年份:
    1992
  • 资助金额:
    $ 4.88万
  • 项目类别:
    International: Foreign Researcher (H)
Mathematical Sciences: Large scale oscillatory behaviour arising from nonlinear systems.
数学科学:非线性系统引起的大规模振荡行为。
  • 批准号:
    9102632
  • 财政年份:
    1991
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Large Scale Oscillatory Behavior Arising from Nonlinear Systems
数学科学:非线性系统引起的大规模振荡行为
  • 批准号:
    9102330
  • 财政年份:
    1991
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Singular Perturbations, Oscillatory Integrals, and Point Interactions
数学科学:奇异扰动、振荡积分和点相互作用
  • 批准号:
    9002523
  • 财政年份:
    1990
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Oscillatory Behaviour in Asymmetric Systems with Loading
数学科学:带负载的不对称系统中的振荡行为
  • 批准号:
    8722532
  • 财政年份:
    1988
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Large-scale Oscillatory Behavior in Asymmetric Systems with Loading
数学科学:带负载的不对称系统中的大规模振荡行为
  • 批准号:
    8722593
  • 财政年份:
    1988
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Oscillatory Systems Arising in Dynamical Models
数学科学:动力学模型中出现的振荡系统
  • 批准号:
    8801686
  • 财政年份:
    1988
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了