Mathematical Sciences: Investigations in Analysis
数学科学:分析研究
基本信息
- 批准号:8707044
- 负责人:
- 金额:$ 3.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1987
- 资助国家:美国
- 起止时间:1987-10-15 至 1989-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of functions defined on real n-space (i.e. the situation in which a quantity depends jointly on some number n of variable quantities) has been one of the basic endeavors of mathematics for centuries, with frequent feed- back from applications. For example, suppose we have an inhomogeneous body situated in 3-space; density within the body may be considered as a function of position. In practice, e.g. in computed tomography, the density function is unknown and must be explored indirectly. The mathematical procedure for doing this is to "transform" the unknown function into another function that one can more easily see. (A CAT scanner is an expensive and elaborate implementation of a particular sort of transform.) Mathematical investigation of a given transform typically addresses questions such as the following. How much information is lost in forming the new function from the old? What kind (from very smooth to extremely chaotic) of new function does one obtain from what kind of old function? If you change the old function just a little, does the new, transformed function also change just a little, or drastically? (In mathematical language, is the transform continuous, or not?) Professor Oberlin's project has mostly to do with the question of continuity for a family of transforms indexed by real numbers between 1 and infinity. At the two extremes, one has, respectively, the Riesz potential and the spherical maximal operator, both of whose behavior is well-understood. The problem is, what happens in between? This is a hard question. One can get a feel for the situation by means of computer experiments, but these are necessarily inconclusive. Intricate and clever arguments by the mathematician himself are required to settle matters finally.
对定义在实n空间上的函数的研究(即一个量共同依赖于变量的某个数n的情况)是几个世纪以来数学的基本努力之一,经常得到应用的反馈。例如,假设我们在三维空间中有一个非齐次物体;体内的密度可以看作是位置的函数。在实际应用中,例如在计算机断层扫描中,密度函数是未知的,必须间接地探索。这样做的数学过程是将未知函数“转换”为另一个更容易看到的函数。(CAT扫描仪是一种昂贵而复杂的特定转换实现。)对给定变换的数学研究通常会解决以下问题。在由旧函数形成新函数的过程中丢失了多少信息?从什么样的旧函数得到什么样的新函数(从非常平滑到极其混乱)?如果你稍微改变旧的函数,新的,变换后的函数是否也会改变一点点,或者改变很大?(用数学语言来说,这个变换是连续的还是不连续的?)Oberlin教授的项目主要是关于一组变换的连续性问题,这些变换以1到无穷之间的实数为索引。在两个极端情况下,分别有Riesz势和球面极大算子,它们的行为都是很容易理解的。问题是,中间会发生什么?这是个很难回答的问题。人们可以通过计算机实验来了解情况,但这些实验必然是不确定的。要最终解决问题,需要数学家本人进行复杂而巧妙的论证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Oberlin其他文献
PD25-11 TURBT: THE EFFECT OF OPERATIVE DURATION ON POST-OPERATIVE COMPLICATIONS IN 10,526 PATIENTS
- DOI:
10.1016/j.juro.2015.02.1660 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:
- 作者:
Richard Matulewicz;Vidit Sharma;Barry McGuire;Daniel Oberlin;John Kim;Kent Perry;Robert Nadler - 通讯作者:
Robert Nadler
MP11-20 DIFFERENCES IN CASE LOGS OF UROLOGISTS BY PROCEDURE AND SPECIALTY ALONG GENDER LINES
- DOI:
10.1016/j.juro.2014.02.435 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:
- 作者:
Laurie Bachrach;Daniel Oberlin;Sarah Flury - 通讯作者:
Sarah Flury
PD8-06 PERIOPERATIVE BLOOD TRANSFUSIONS AS A RISK FACTOR FOR INFECTIOUS COMPLICATIONS AFTER UROLOGIC SURGERY
- DOI:
10.1016/j.juro.2015.02.921 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:
- 作者:
Richard Matulewicz;Daniel Oberlin;Irene Helenowski;Borko Jovanovic;Shilajit Kundu - 通讯作者:
Shilajit Kundu
PD17-05 MANAGEMENT OF CLINICAL STAGE I SEMINOMA: HEADED IN THE RIGHT DIRECTION, BUT FAST ENOUGH?
- DOI:
10.1016/j.juro.2016.02.1170 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Richard Matulewicz;Daniel Oberlin;Joel Sheinfeld;Joshua Meeks - 通讯作者:
Joshua Meeks
Application of a Fourier Restriction Theorem to Certain Families of Projections in $${\mathbb {R}}^3$$
- DOI:
10.1007/s12220-014-9480-7 - 发表时间:
2014-03-22 - 期刊:
- 影响因子:1.500
- 作者:
Daniel Oberlin;Richard Oberlin - 通讯作者:
Richard Oberlin
Daniel Oberlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Oberlin', 18)}}的其他基金
Harmonic Analysis and Affinely Invariant Measures
谐波分析和仿射不变测量
- 批准号:
9986804 - 财政年份:2000
- 资助金额:
$ 3.65万 - 项目类别:
Standard Grant
Mathematical Sciences: Oscillatory Integrals and ConvolutionOperators
数学科学:振荡积分和卷积算子
- 批准号:
9530537 - 财政年份:1996
- 资助金额:
$ 3.65万 - 项目类别:
Standard Grant
Mathematical Sciences: Convolution Estimates and Sobolev Inequalities
数学科学:卷积估计和索博列夫不等式
- 批准号:
8922379 - 财政年份:1990
- 资助金额:
$ 3.65万 - 项目类别:
Standard Grant
Mathematical Sciences: Investigations in Analysis
数学科学:分析研究
- 批准号:
8219327 - 财政年份:1983
- 资助金额:
$ 3.65万 - 项目类别:
Standard Grant
Harmonic Analysis on Some Non Locally Convex Function Spaces
一些非局部凸函数空间的调和分析
- 批准号:
7602267 - 财政年份:1976
- 资助金额:
$ 3.65万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Investigations on Normal and Paracompact Spaces
数学科学:正规空间和仿紧空间的研究
- 批准号:
9623391 - 财政年份:1996
- 资助金额:
$ 3.65万 - 项目类别:
Standard Grant
Mathematical Sciences: "Nonlinear Modeling of Spatially Correlated Data: Preliminary Investigations"
数学科学:“空间相关数据的非线性建模:初步研究”
- 批准号:
9631877 - 财政年份:1996
- 资助金额:
$ 3.65万 - 项目类别:
Standard Grant
Mathematical Sciences: Computational and Mathematical Investigations in Optimization
数学科学:优化中的计算和数学研究
- 批准号:
9505155 - 财政年份:1995
- 资助金额:
$ 3.65万 - 项目类别:
Continuing grant
Mathematical Sciences: Investigations into Development of Microstructure, Ginzburg-Landau Vortices, and Travelling Waves on Lattics
数学科学:微观结构、金兹堡-朗道涡旋和格子上行波的发展研究
- 批准号:
9501395 - 财政年份:1995
- 资助金额:
$ 3.65万 - 项目类别:
Continuing Grant
Mathematical Sciences: Investigations in Number Theory
数学科学:数论研究
- 批准号:
9424642 - 财政年份:1995
- 资助金额:
$ 3.65万 - 项目类别:
Standard Grant
Mathematical Sciences: Investigations in Mixed Integer Programming
数学科学:混合整数规划研究
- 批准号:
9407142 - 财政年份:1994
- 资助金额:
$ 3.65万 - 项目类别:
Continuing grant
Mathematical Sciences: Investigations Into Computationally Intensive Statistical Methods
数学科学:计算密集型统计方法的研究
- 批准号:
9404594 - 财政年份:1994
- 资助金额:
$ 3.65万 - 项目类别:
Standard Grant
Mathematical Sciences: Investigations of Phase Transitions Using Relaxation and Nonlocal Regularization
数学科学:利用弛豫和非局部正则化研究相变
- 批准号:
9403844 - 财政年份:1994
- 资助金额:
$ 3.65万 - 项目类别:
Continuing Grant
Mathematical Sciences: Investigations in Order Restricted Inference and Improved Inference Procedures
数学科学:有序限制推理和改进推理程序的研究
- 批准号:
9400476 - 财政年份:1994
- 资助金额:
$ 3.65万 - 项目类别:
Continuing Grant
Mathematical Sciences: Investigations in Mathematical Statistics
数学科学:数理统计研究
- 批准号:
9596094 - 财政年份:1994
- 资助金额:
$ 3.65万 - 项目类别:
Continuing grant