Mathematical Sciences: Absolute Continuity of Parabolic Measure and Regularity of PDE's
数学科学:抛物线测度的绝对连续性和偏微分方程的正则性
基本信息
- 批准号:9531642
- 负责人:
- 金额:$ 6.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-15 至 1999-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Lewis 9531642 This research is concerned with mutual absolute continuity of parabolic and Lebesgue measure as well as related Dirichlet-Neumann problems. In certain time varying domains Lewis and Murray have shown that parabolic measure for the heat equation is mutually absolutely continuous with respect to a certain projective Lebesgue measure. This investigation will begin with the study of a model pde whose prototype is the pullback pde obtained from the heat equation by way of a certain mapping onto the above time varying domain. Since the pullback pde has a parabolic measure that is mutually absolutely continuous with respect to Lebesgue measure, the object of the investigation will be to determine what properties of the model pde are actually needed to guarantee mutual absolute continuity of the above measures. As for the Dirichlet and Neumann problems they are now well understood for square integrable functions defined on the boundary of the above time varying domains. The next step is to consider the Neumann problem for p th power integrable functions when p is between 1 and 2. Again the above pullback pde needs to be analyzed closely. Many phyical processes can be analyzed using partial differential equations. The most famous classical partial differential equations are Laplace's equation, the heat equation, and the wave equation each of which originated in the 18 th and 19 th centuries and found uses in the study of gravity, electricity, fluid flow, electromagnetic waves, to mention only a few topics. My research concerns problems of the following type : Given the temperature on the walls of a room, find the temperature at any place in the room at any later time ? This problem is called the Dirichlet problem for the heat equation. The Neumann problem can be stated similarly in terms of the rate at which heat is flowing out of the walls of the room. Mathematically if the temperature on the walls of the room is fixed and nice enough (cont inuous), then the Dirichlet problem can be shown to have a unique solution. Part of my research has been concerned with whether this problem has a unique solution when the walls of the room and temperature on the walls is allowed to vary. This problem has now been essentially completely solved and the corresponding Neumann problem is being studied. Possible applications of this research are to free boundary problems where the size and temperature of an object are constantly changing (ice melting, gases expanding, nuclear waste solidifying).
摘要刘易斯9531642 本文研究了抛物测度与Lebesgue测度的相互绝对连续性以及相关的Dirichlet-Neumann问题。刘易斯和Murray证明了在某些时变区域上热方程的抛物测度关于某个射影Lebesgue测度是相互绝对连续的。 本研究将开始于一个模型偏微分方程的研究,其原型是通过在上述时变域上的某种映射从热方程得到的拉回偏微分方程。 由于拉回偏微分方程有一个抛物线测度, 由于相对于勒贝格测度是连续的,因此研究的目的是确定实际需要模型pde的哪些属性来保证上述测度的相互绝对连续性。至于狄利克雷和诺依曼问题,他们现在很好地理解为平方可积函数的边界上定义的上述时变域。下一步是考虑当p在1和2之间时p次幂可积函数的Neumann问题。同样,上述回调PDE 需要仔细分析。 许多物理过程可以用偏微分方程来分析。最著名的经典偏微分方程是拉普拉斯方程、热方程和波动方程,它们都起源于18世纪和19世纪,在重力、电、流体流动、电磁波等方面都有应用。 我的研究涉及以下类型的问题: 温度的墙壁上的一个房间,找到温度在任何地方的房间在任何以后的时间? 这个问题被称为热方程的狄利克雷问题。诺依曼问题也可以用类似的方式表述,即热量从房间墙壁流出的速率。 在数学上,如果房间墙壁上的温度是固定的,并且足够好(连续),那么狄利克雷问题可以被证明有一个唯一的解。 我的研究的一部分一直关注这个问题是否有一个独特的解决方案时,房间的墙壁和墙壁上的温度允许变化。这个问题现在基本上已经完全解决, Neumann问题正在研究中。 这项研究的可能应用是自由边界问题,其中物体的尺寸和温度不断变化(冰融化,气体膨胀,核废料固化)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Lewis其他文献
Inter-fraction variations in motion modeling using patient 4D-cone beam CT images
使用患者 4D 锥形束 CT 图像进行运动建模中的分数间变化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
S. Dhou;D. Ionascu;C. Williams;John Lewis - 通讯作者:
John Lewis
Utility of Large Language Models to Quantify Diagnostic Delays in Systemic Mastocytosis: A Multi-Center Real World Study
大语言模型在量化系统性肥大细胞增多症诊断延迟方面的效用:一项多中心真实世界研究
- DOI:
10.1016/j.jaci.2024.12.549 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:11.200
- 作者:
Cecilia Arana Yi;Hunter Mills;Syed Arsalan Naqvi;Muhammad Khan;Umair Ayub;Ahmed Ibrahim;Shadera Slatter;Lisa Sproat;Nandita Khera;Kate Freeman;John Lewis;Animesh Pardanani;Ayalew Tefferi;Michelle Elliott;Aref Al-Kali;Thanai Pongdee;Joseph Butterfield;Candido Rivera;Ewa Wysokinska;Daniel Shaheen;Vivek A. Rudrapatna - 通讯作者:
Vivek A. Rudrapatna
Rapid elimination of Carboxy-THC in a cohort of chronic cannabis users
在慢性大麻使用者群体中快速消除羧基-THC
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
John Lewis;A. Molnár;D. Allsop;J. Copeland;S. Fu - 通讯作者:
S. Fu
Vallisneria spiralis (eelweed)
- DOI:
10.1079/cabicompendium.56573 - 发表时间:
2022-01 - 期刊:
- 影响因子:0
- 作者:
John Lewis - 通讯作者:
John Lewis
John Lewis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Lewis', 18)}}的其他基金
Dimension of p Harmonic Measure and Related Topics
p 谐波测量的维数及相关主题
- 批准号:
1265996 - 财政年份:2013
- 资助金额:
$ 6.58万 - 项目类别:
Continuing Grant
Applications of Boundary Harnack Inequalities for p Harmonic Functions to Problems in Harmonic Analysis, PDE, and Function Theory
p 调和函数的边界 Harnack 不等式在调和分析、偏微分方程和函数论问题中的应用
- 批准号:
0900291 - 财政年份:2009
- 资助金额:
$ 6.58万 - 项目类别:
Continuing Grant
Problems of Existence, Uniqueness, and Dimension in Harmonic Analysis, Function Theory, and Partial Differential Equations
调和分析、函数论和偏微分方程中的存在性、唯一性和维数问题
- 批准号:
0552281 - 财政年份:2006
- 资助金额:
$ 6.58万 - 项目类别:
Standard Grant
Questions Concerning Parabolic Measure, Uniform Rectifiability and the Kato Square Root Problem
关于抛物线测度、均匀可整流性和加藤平方根问题的问题
- 批准号:
0139748 - 财政年份:2002
- 资助金额:
$ 6.58万 - 项目类别:
Continuing Grant
New Approaches to Maass Wave Forms in Mathematics and Physics
数学和物理中马斯波形的新方法
- 批准号:
0105314 - 财政年份:2001
- 资助金额:
$ 6.58万 - 项目类别:
Standard Grant
U.S.-Korea Cooperative Science: Navier-Stokes Equations and Related Topics
美韩合作科学:纳维-斯托克斯方程及相关主题
- 批准号:
0090112 - 财政年份:2001
- 资助金额:
$ 6.58万 - 项目类别:
Standard Grant
Topics in PDE's and Quasiconformal Mappings
偏微分方程和拟共形映射主题
- 批准号:
9876881 - 财政年份:1999
- 资助金额:
$ 6.58万 - 项目类别:
Standard Grant
Mathematical Sciences: Quasiregular Mappings and the Heat Equation
数学科学:拟正则映射和热方程
- 批准号:
9311539 - 财政年份:1993
- 资助金额:
$ 6.58万 - 项目类别:
Standard Grant
Geology and Geochemistry of the Maimon Formation and Associated Massive Sulfide Deposits, Central Dominican Republic
多米尼加共和国中部迈蒙组及相关大量硫化物矿床的地质和地球化学
- 批准号:
9107784 - 财政年份:1992
- 资助金额:
$ 6.58万 - 项目类别:
Standard Grant
Mechanism of Action of Interferon-gamma
干扰素-γ的作用机制
- 批准号:
9105645 - 财政年份:1991
- 资助金额:
$ 6.58万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
- 批准号:
AH/Y007654/1 - 财政年份:2024
- 资助金额:
$ 6.58万 - 项目类别:
Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
- 批准号:
EP/Z000467/1 - 财政年份:2024
- 资助金额:
$ 6.58万 - 项目类别:
Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
- 批准号:
EP/Z000580/1 - 财政年份:2024
- 资助金额:
$ 6.58万 - 项目类别:
Research Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 6.58万 - 项目类别:
Cooperative Agreement
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
- 批准号:
2349230 - 财政年份:2024
- 资助金额:
$ 6.58万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
- 批准号:
2341900 - 财政年份:2024
- 资助金额:
$ 6.58万 - 项目类别:
Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
- 批准号:
2342821 - 财政年份:2024
- 资助金额:
$ 6.58万 - 项目类别:
Standard Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
- 批准号:
2326751 - 财政年份:2024
- 资助金额:
$ 6.58万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 6.58万 - 项目类别:
Continuing Grant
Meta-analysis for environmental sciences
环境科学荟萃分析
- 批准号:
NE/Y003721/1 - 财政年份:2024
- 资助金额:
$ 6.58万 - 项目类别:
Training Grant














{{item.name}}会员




