Mathematical Sciences: Quasiregular Mappings and the Heat Equation

数学科学:拟正则映射和热方程

基本信息

  • 批准号:
    9311539
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1993
  • 资助国家:
    美国
  • 起止时间:
    1993-06-15 至 1996-11-30
  • 项目状态:
    已结题

项目摘要

This project continues mathematical research on quasiregular mappings and the heat equation. Quasiregular mappings were introduced during the past quarter century to describe transformations of the plane and space whose distortion (dilatation) about any point is bounded. Quasiconformal maps have the same definition except that they are required to be univalent. Quasiregular maps are closely related to questions of uniqueness in the theory of partial differential equations. This project will focus on investigations into weak solutions of elliptic and parabolic differential equations and the relationship between the branch set of an entire quasiregular or quasimeromorphic function and its value distribution. Work will also continue on singular integrals and the heat equation for certain time varying domains in space. The one space variable case is now well understood. Current plans are to carry forward recent results into the multidimensional case. The goals are to study the Dirichlet and Neumann problems on these domains and seek to determine the mutual absolute continuity of parabolic measure with respect to a certain projective Lebesgue measure. This will use the method of layer potentials, the David buildup scheme and singular integral estimates. Partial differential equations form a basis for mathematical modeling of the physical world. The role of mathematical analysis is not so much to create the equations as it is.
本项目继续对拟正则映射和热方程进行数学研究。拟正则映射是在过去的四分之一世纪中被引入的,用来描述其关于任意点的变形(膨胀)有界的平面和空间的变换。拟共形映射具有相同的定义,只是它们被要求是单叶的。拟正则映射与偏微分方程组理论中的唯一性问题密切相关。本课题将集中研究椭圆型和抛物型方程的弱解,以及整个拟正则或拟亚纯函数的分支集与其值分布之间的关系。关于空间中某些时变区域的奇异积分和热方程的工作也将继续进行。单空间变量的情况现在已经很好地理解了。目前的计划是将最近的结果推广到多维情况下。其目的是研究这些区域上的Dirichlet和Neumann问题,并寻求确定抛物测度关于某一射影Lebesgue型测度的相互绝对连续性。这将使用层势方法、David积累法和奇异积分估计。偏微分方程式是建立物理世界数学模型的基础。数学分析的作用与其说是创建方程式,不如说是创造方程式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Lewis其他文献

Inter-fraction variations in motion modeling using patient 4D-cone beam CT images
使用患者 4D 锥形束 CT 图像进行运动建模中的分数间变化
Utility of Large Language Models to Quantify Diagnostic Delays in Systemic Mastocytosis: A Multi-Center Real World Study
大语言模型在量化系统性肥大细胞增多症诊断延迟方面的效用:一项多中心真实世界研究
  • DOI:
    10.1016/j.jaci.2024.12.549
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    11.200
  • 作者:
    Cecilia Arana Yi;Hunter Mills;Syed Arsalan Naqvi;Muhammad Khan;Umair Ayub;Ahmed Ibrahim;Shadera Slatter;Lisa Sproat;Nandita Khera;Kate Freeman;John Lewis;Animesh Pardanani;Ayalew Tefferi;Michelle Elliott;Aref Al-Kali;Thanai Pongdee;Joseph Butterfield;Candido Rivera;Ewa Wysokinska;Daniel Shaheen;Vivek A. Rudrapatna
  • 通讯作者:
    Vivek A. Rudrapatna
Rapid elimination of Carboxy-THC in a cohort of chronic cannabis users
在慢性大麻使用者群体中快速消除羧基-THC
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Lewis;A. Molnár;D. Allsop;J. Copeland;S. Fu
  • 通讯作者:
    S. Fu
Vallisneria spiralis (eelweed)
  • DOI:
    10.1079/cabicompendium.56573
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Lewis
  • 通讯作者:
    John Lewis
The history of Mars
火星的历史
  • DOI:
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Lewis
  • 通讯作者:
    John Lewis

John Lewis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Lewis', 18)}}的其他基金

Dimension of p Harmonic Measure and Related Topics
p 谐波测量的维数及相关主题
  • 批准号:
    1265996
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Applications of Boundary Harnack Inequalities for p Harmonic Functions to Problems in Harmonic Analysis, PDE, and Function Theory
p 调和函数的边界 Harnack 不等式在调和分析、偏微分方程和函数论问题中的应用
  • 批准号:
    0900291
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Problems of Existence, Uniqueness, and Dimension in Harmonic Analysis, Function Theory, and Partial Differential Equations
调和分析、函数论和偏微分方程中的存在性、唯一性和维数问题
  • 批准号:
    0552281
  • 财政年份:
    2006
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Questions Concerning Parabolic Measure, Uniform Rectifiability and the Kato Square Root Problem
关于抛物线测度、均匀可整流性和加藤平方根问题的问题
  • 批准号:
    0139748
  • 财政年份:
    2002
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
New Approaches to Maass Wave Forms in Mathematics and Physics
数学和物理中马斯波形的新方法
  • 批准号:
    0105314
  • 财政年份:
    2001
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
U.S.-Korea Cooperative Science: Navier-Stokes Equations and Related Topics
美韩合作科学:纳维-斯托克斯方程及相关主题
  • 批准号:
    0090112
  • 财政年份:
    2001
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Topics in PDE's and Quasiconformal Mappings
偏微分方程和拟共形映射主题
  • 批准号:
    9876881
  • 财政年份:
    1999
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Absolute Continuity of Parabolic Measure and Regularity of PDE's
数学科学:抛物线测度的绝对连续性和偏微分方程的正则性
  • 批准号:
    9531642
  • 财政年份:
    1996
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Geology and Geochemistry of the Maimon Formation and Associated Massive Sulfide Deposits, Central Dominican Republic
多米尼加共和国中部迈蒙组及相关大量硫化物矿床的地质和地球化学
  • 批准号:
    9107784
  • 财政年份:
    1992
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Mechanism of Action of Interferon-gamma
干扰素-γ的作用机制
  • 批准号:
    9105645
  • 财政年份:
    1991
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
  • 批准号:
    EP/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
  • 批准号:
    EP/Z000580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
  • 批准号:
    2330043
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Cooperative Agreement
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    2349230
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
  • 批准号:
    2341900
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
  • 批准号:
    2342821
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
  • 批准号:
    2326751
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Meta-analysis for environmental sciences
环境科学荟萃分析
  • 批准号:
    NE/Y003721/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了