Questions Concerning Parabolic Measure, Uniform Rectifiability and the Kato Square Root Problem

关于抛物线测度、均匀可整流性和加藤平方根问题的问题

基本信息

  • 批准号:
    0139748
  • 负责人:
  • 金额:
    $ 13.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2005-08-31
  • 项目状态:
    已结题

项目摘要

March 6, 2002PI: John L. LewisDMS-0139748Abstract:The aim of this project is to investigate further some problems originating from my work on (a) caloric measure in parabolic flat domains, (b) inverse problems and (c) Kato type problems. Under (a) I would like to know to what extent such concepts as uniform rectifiability, Reifenberg flatness, and asymptotic optimal doubling which have been extensively studied in regard to Laplace's equation, can be generalized to the heat equation. As regards (b), I would like to investigate whether very weak overdetermined boundary conditions for solutions to certain p-Laplacian type equations in a domain D imply that the boundary of D satisfies a regularity condition similar to uniform rectifiability. Finally under (c) I would like to know if an extrapolation technique, used by the author and co-authors on some parabolic measure and Kato problems, could be applied to other Kato type problems. Many physical problems can be described in the language of partial differential equations (PDE's). Well known examples of such equations arising in the 19 th century are Laplace's equation, the heat equation, the wave equation, Maxwell's equations, and the Navier- Stokes' equation. Without question knowledge derived from a theoretical study of these equations led to many fundamental technological advances during the 19 th and 20 th centuries. Three questions often asked by those who study PDE's are (a) does there exist a solution, (b) is it unique and (c) does it possess nice properties or is it regular? As concerns (a) and (b) one is often concerned with so called boundary values or boundary conditions for a solution in its domain of existence. So called overdetermined boundary value problems have no solution whereas such classical problems as the Dirichlet and Neumann problems have solutions if the boundary of the given domain and the boundary conditions are sufficiently nice (smooth). My work is concerned with how much one can relax these assumptions and still get meaningful theorems. For example, my co-authors and I have obtained nearly optimal results, which show that certain boundary value problems for Laplace's equation can only be solved if the given domain is a ball. As another example of my work, classical theorems for the Laplacian in smooth domains have been shown to hold in a class of rough domains called Lipschitz or sawtooth domains. More recent work has generalized these results to nongraph domains satisfying `uniform rectifiability' assumptions. My co-authors and I have obtained the analogue of Lipschitz and uniformly rectifiable domains for the heat equation. Our work provides a model for certain free boundary problems such as ice melting (the Stefan problem).
2002年3月6日PI:John L. LewisDMS-0139748摘要:本项目的目的是进一步研究源于我的工作的一些问题:(a)抛物平坦区域中的热量测量,(B)反问题和(c)Kato型问题。在(a)中,我想知道在多大程度上,诸如一致可求长性、莱芬贝格平坦性和渐近最优加倍等概念,可以推广到热方程,这些概念在拉普拉斯方程中已经得到了广泛的研究。关于(B),我想研究区域D中某些p-Laplacian型方程解的非常弱的超定边界条件是否意味着D的边界满足类似于一致可求长的正则性条件。 最后,根据(c),我想知道,如果外推技术,使用的作者和合著者对一些抛物措施和加藤问题,可以适用于其他加藤型问题。 许多物理问题可以用偏微分方程(PDE)的语言来描述。在19世纪出现的这种方程的著名例子是拉普拉斯方程、热方程、波动方程、麦克斯韦方程和纳维-斯托克斯方程.毫无疑问,从这些方程的理论研究中获得的知识导致了19世纪和20世纪的许多基本技术进步。研究偏微分方程的人经常问的三个问题是:(a)是否存在解,(B)解是否唯一,(c)解是否具有好的性质,或者解是否是正则的? 关于(a)和(B),人们经常关心的是解在其存在域中的所谓边界值或边界条件。所谓的超定边值问题没有解,而经典问题如Dirichlet和Neumann问题有解,如果给定区域的边界和边界条件足够好(光滑)。我的工作是关注人们可以在多大程度上放松这些假设,仍然得到有意义的定理。例如,我的合著者和我已经获得了接近最优的结果,这表明,某些边值问题的拉普拉斯方程只能解决,如果给定的区域是一个球。作为我工作的另一个例子,光滑域中拉普拉斯算子的经典定理已被证明在一类称为Lipschitz或锯齿域的粗糙域中成立。 最近的工作已经将这些结果推广到非图域,满足“一致可求正性”的假设。 我的合著者和我已经获得了类似的Lipschitz和一致求长域的热方程。我们的工作提供了一个模型,某些自由边界问题,如冰融化(斯特凡问题)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Lewis其他文献

Inter-fraction variations in motion modeling using patient 4D-cone beam CT images
使用患者 4D 锥形束 CT 图像进行运动建模中的分数间变化
Rapid elimination of Carboxy-THC in a cohort of chronic cannabis users
在慢性大麻使用者群体中快速消除羧基-THC
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Lewis;A. Molnár;D. Allsop;J. Copeland;S. Fu
  • 通讯作者:
    S. Fu
Utility of Large Language Models to Quantify Diagnostic Delays in Systemic Mastocytosis: A Multi-Center Real World Study
大语言模型在量化系统性肥大细胞增多症诊断延迟方面的效用:一项多中心真实世界研究
  • DOI:
    10.1016/j.jaci.2024.12.549
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    11.200
  • 作者:
    Cecilia Arana Yi;Hunter Mills;Syed Arsalan Naqvi;Muhammad Khan;Umair Ayub;Ahmed Ibrahim;Shadera Slatter;Lisa Sproat;Nandita Khera;Kate Freeman;John Lewis;Animesh Pardanani;Ayalew Tefferi;Michelle Elliott;Aref Al-Kali;Thanai Pongdee;Joseph Butterfield;Candido Rivera;Ewa Wysokinska;Daniel Shaheen;Vivek A. Rudrapatna
  • 通讯作者:
    Vivek A. Rudrapatna
Vallisneria spiralis (eelweed)
  • DOI:
    10.1079/cabicompendium.56573
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Lewis
  • 通讯作者:
    John Lewis
The history of Mars
火星的历史
  • DOI:
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Lewis
  • 通讯作者:
    John Lewis

John Lewis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Lewis', 18)}}的其他基金

Dimension of p Harmonic Measure and Related Topics
p 谐波测量的维数及相关主题
  • 批准号:
    1265996
  • 财政年份:
    2013
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Continuing Grant
Applications of Boundary Harnack Inequalities for p Harmonic Functions to Problems in Harmonic Analysis, PDE, and Function Theory
p 调和函数的边界 Harnack 不等式在调和分析、偏微分方程和函数论问题中的应用
  • 批准号:
    0900291
  • 财政年份:
    2009
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Continuing Grant
Problems of Existence, Uniqueness, and Dimension in Harmonic Analysis, Function Theory, and Partial Differential Equations
调和分析、函数论和偏微分方程中的存在性、唯一性和维数问题
  • 批准号:
    0552281
  • 财政年份:
    2006
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant
New Approaches to Maass Wave Forms in Mathematics and Physics
数学和物理中马斯波形的新方法
  • 批准号:
    0105314
  • 财政年份:
    2001
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant
U.S.-Korea Cooperative Science: Navier-Stokes Equations and Related Topics
美韩合作科学:纳维-斯托克斯方程及相关主题
  • 批准号:
    0090112
  • 财政年份:
    2001
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant
Topics in PDE's and Quasiconformal Mappings
偏微分方程和拟共形映射主题
  • 批准号:
    9876881
  • 财政年份:
    1999
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Absolute Continuity of Parabolic Measure and Regularity of PDE's
数学科学:抛物线测度的绝对连续性和偏微分方程的正则性
  • 批准号:
    9531642
  • 财政年份:
    1996
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Quasiregular Mappings and the Heat Equation
数学科学:拟正则映射和热方程
  • 批准号:
    9311539
  • 财政年份:
    1993
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant
Geology and Geochemistry of the Maimon Formation and Associated Massive Sulfide Deposits, Central Dominican Republic
多米尼加共和国中部迈蒙组及相关大量硫化物矿床的地质和地球化学
  • 批准号:
    9107784
  • 财政年份:
    1992
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant
Mechanism of Action of Interferon-gamma
干扰素-γ的作用机制
  • 批准号:
    9105645
  • 财政年份:
    1991
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Standard Grant

相似海外基金

Integrating 'Records' and 'Memories' Concerning the Nagasaki Atomic Bombing
整合有关长崎原子弹爆炸的“记录”和“记忆”
  • 批准号:
    23H00893
  • 财政年份:
    2023
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Re-examining the understanding of agency and consent in law concerning sexual offences involving autistic people
重新审视有关自闭症患者性犯罪的法律中对代理和同意的理解
  • 批准号:
    2887429
  • 财政年份:
    2023
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Studentship
How might an unmet patient need in metal health concerning memory be satisfied using transcribed session summaries
如何使用转录的会议摘要来满足患者在金属健康方面与记忆相关的未满足需求
  • 批准号:
    10045783
  • 财政年份:
    2023
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Collaborative R&D
Empirical and implementation research concerning various population interventions to prevent and reduce social isolation among older adults
关于预防和减少老年人社会孤立的各种人口干预措施的实证和实施研究
  • 批准号:
    23H00060
  • 财政年份:
    2023
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Quality Oriented Design Method for CPS Concerning Effects of Modules with Uncertain Behaviour
涉及不确定行为模块影响的CPS质量导向设计方法
  • 批准号:
    23K11058
  • 财政年份:
    2023
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the pathology concerning inflammasome associated pancytopenia in severe sepsis, and its control by microRNA.
阐明严重脓毒症中炎症小体相关的全血细胞减少症的病理学及其通过 microRNA 的控制。
  • 批准号:
    23K08434
  • 财政年份:
    2023
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A General Study concerning the Formation and Development of Anthropology in Ancient Greece
古希腊人类学的形成与发展概况
  • 批准号:
    23K00043
  • 财政年份:
    2023
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
What percentage of words (tokens) should learners know to comprehend listening materials? An updated examination for teachers and researchers concerning input mode, meaning senses of words, and genre
学习者应该知道多少百分比的单词(标记)才能理解听力材料?
  • 批准号:
    23K00712
  • 财政年份:
    2023
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of sociotechnical-imaginary concerning new food-tech
新食品技术的社会技术想象研究
  • 批准号:
    23K17489
  • 财政年份:
    2023
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Investigating neural substrates concerning the lifecycle of brand love
研究与品牌喜爱生命周期相关的神经基质
  • 批准号:
    23K01663
  • 财政年份:
    2023
  • 资助金额:
    $ 13.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了