Dimension of p Harmonic Measure and Related Topics

p 谐波测量的维数及相关主题

基本信息

  • 批准号:
    1265996
  • 负责人:
  • 金额:
    $ 13.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

This proposal is concerned with the dimension of a measure associated with a positive solution to the p Laplace equation, often called a p harmonic function, which vanishes continuously on the boundary of a domain and related problems. If p is two the p Laplace equation reduces to Laplace's equation and the Green's function for Laplace's equation, with pole at a fixed point in the domain, gives harmonic measure. This measure has had numerous applications in Potential Theory and applied areas throughout the twentieth century. In the mid 1980's mathematicians began to study the Hausdorff dimension of harmonic measure. In an important paper, Makarov proved that harmonic measure in simply connected planar domains always has dimension one. Jones and Wolf showed that the dimension of this measure is always less than or equal to one in any planar domain. The proposer has obtained endpoint type analogues of Makarov's work for p harmonic measures, when p is between one and infinity. In this proposal he discusses possible techniques for studying p harmonic measures in arbitrary planar domains and also in certain domains in higher dimensional Euclidean space. Laplace's equation was used widely throughout the nineteenth and twentieth centuries to explain physical processes. Its nonlinear cousin, the p Laplacian, has only recently found applications in mathematical modeling (glacier formation, image processing) perhaps because this PDE is difficult to work with. The PI's work with coauthors gives the p Laplacian strong visibility in an area previously reserved for the Laplacian.The PI and coauthors have developed a p harmonic toolbox which enabled them to make significant progress on problems previously considered solvable only for Laplace's equation. The PI believes that the techniques, results, and problems discussed in his proposal will play an important role in popularizing the p Laplacian and also have applications in mathematical modeling. These problems - techniques involve a nice mixture of harmonic analysis, complex function theory, and partial differential equations, so should be attractive to researchers and graduate students in a wide area of mathematical and applied analysis.
这一建议涉及与p-Laplace方程(通常称为p-调和函数)的正解相关的度量的维度,该函数在区域边界上连续消失以及相关问题。若p为2,则p拉普拉斯方程化为拉普拉斯方程,极点在区域内不动点的拉普拉斯方程的格林函数给出调和测度。在整个二十世纪,这一衡量标准在势能理论和应用领域有许多应用。20世纪80年代中期,数学家S开始研究调和测度的Hausdorff维。在一篇重要的文章中,Makarov证明了单连通平面区域上的调和测度总有一维。Jones和Wolf证明了这一度量在任何平面区域上的维度总是小于或等于1。当p介于1和无穷大之间时,作者得到了Makarov关于p个调和测度的端点型类似结果。在这一建议中,他讨论了在任意平面区域以及高维欧氏空间中的某些区域中研究p调和测度的可能方法。拉普拉斯方程在整个十九世纪和二十世纪被广泛用于解释物理过程。它的非线性表亲p-拉普拉斯方程直到最近才在数学建模(冰川形成、图像处理)中得到应用,可能是因为这种偏微分方程组很难处理。PI和合著者共同开发了一个p调和工具箱,使他们能够在以前认为只有拉普拉斯方程可解的问题上取得重大进展。PI相信,他的建议中讨论的技术、结果和问题将在推广p-Laplace方法方面发挥重要作用,并在数学建模中也有应用。这些问题-技术涉及调和分析、复函数理论和偏微分方程的很好的混合,因此应该对数学和应用分析的广泛领域的研究人员和研究生有吸引力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Lewis其他文献

Inter-fraction variations in motion modeling using patient 4D-cone beam CT images
使用患者 4D 锥形束 CT 图像进行运动建模中的分数间变化
Rapid elimination of Carboxy-THC in a cohort of chronic cannabis users
在慢性大麻使用者群体中快速消除羧基-THC
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Lewis;A. Molnár;D. Allsop;J. Copeland;S. Fu
  • 通讯作者:
    S. Fu
Utility of Large Language Models to Quantify Diagnostic Delays in Systemic Mastocytosis: A Multi-Center Real World Study
大语言模型在量化系统性肥大细胞增多症诊断延迟方面的效用:一项多中心真实世界研究
  • DOI:
    10.1016/j.jaci.2024.12.549
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    11.200
  • 作者:
    Cecilia Arana Yi;Hunter Mills;Syed Arsalan Naqvi;Muhammad Khan;Umair Ayub;Ahmed Ibrahim;Shadera Slatter;Lisa Sproat;Nandita Khera;Kate Freeman;John Lewis;Animesh Pardanani;Ayalew Tefferi;Michelle Elliott;Aref Al-Kali;Thanai Pongdee;Joseph Butterfield;Candido Rivera;Ewa Wysokinska;Daniel Shaheen;Vivek A. Rudrapatna
  • 通讯作者:
    Vivek A. Rudrapatna
Vallisneria spiralis (eelweed)
  • DOI:
    10.1079/cabicompendium.56573
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Lewis
  • 通讯作者:
    John Lewis
The history of Mars
火星的历史
  • DOI:
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Lewis
  • 通讯作者:
    John Lewis

John Lewis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Lewis', 18)}}的其他基金

Applications of Boundary Harnack Inequalities for p Harmonic Functions to Problems in Harmonic Analysis, PDE, and Function Theory
p 调和函数的边界 Harnack 不等式在调和分析、偏微分方程和函数论问题中的应用
  • 批准号:
    0900291
  • 财政年份:
    2009
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Continuing Grant
Problems of Existence, Uniqueness, and Dimension in Harmonic Analysis, Function Theory, and Partial Differential Equations
调和分析、函数论和偏微分方程中的存在性、唯一性和维数问题
  • 批准号:
    0552281
  • 财政年份:
    2006
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
Questions Concerning Parabolic Measure, Uniform Rectifiability and the Kato Square Root Problem
关于抛物线测度、均匀可整流性和加藤平方根问题的问题
  • 批准号:
    0139748
  • 财政年份:
    2002
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Continuing Grant
New Approaches to Maass Wave Forms in Mathematics and Physics
数学和物理中马斯波形的新方法
  • 批准号:
    0105314
  • 财政年份:
    2001
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
U.S.-Korea Cooperative Science: Navier-Stokes Equations and Related Topics
美韩合作科学:纳维-斯托克斯方程及相关主题
  • 批准号:
    0090112
  • 财政年份:
    2001
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
Topics in PDE's and Quasiconformal Mappings
偏微分方程和拟共形映射主题
  • 批准号:
    9876881
  • 财政年份:
    1999
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Absolute Continuity of Parabolic Measure and Regularity of PDE's
数学科学:抛物线测度的绝对连续性和偏微分方程的正则性
  • 批准号:
    9531642
  • 财政年份:
    1996
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Quasiregular Mappings and the Heat Equation
数学科学:拟正则映射和热方程
  • 批准号:
    9311539
  • 财政年份:
    1993
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
Geology and Geochemistry of the Maimon Formation and Associated Massive Sulfide Deposits, Central Dominican Republic
多米尼加共和国中部迈蒙组及相关大量硫化物矿床的地质和地球化学
  • 批准号:
    9107784
  • 财政年份:
    1992
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
Mechanism of Action of Interferon-gamma
干扰素-γ的作用机制
  • 批准号:
    9105645
  • 财政年份:
    1991
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant

相似国自然基金

算子方法在Harmonic数恒等式中的应用
  • 批准号:
    11201241
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Ricci-Harmonic流的长时间存在性
  • 批准号:
    11126190
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
  • 批准号:
    RGPIN-2017-03755
  • 财政年份:
    2022
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
  • 批准号:
    RGPIN-2017-03755
  • 财政年份:
    2021
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
  • 批准号:
    RGPIN-2017-03755
  • 财政年份:
    2020
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
  • 批准号:
    RGPIN-2017-03755
  • 财政年份:
    2019
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
  • 批准号:
    RGPIN-2017-03755
  • 财政年份:
    2018
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Discovery Grants Program - Individual
Research Term on Real Harmonic Analysis and Its Applications to Partial Differential Equations and Geometric Measure Theory
实调和分析及其在偏微分方程和几何测度理论中的应用研究术语
  • 批准号:
    1764430
  • 财政年份:
    2018
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Standard Grant
"Harmonic analysis, additive combinatorics and geometric measure theory"
“调和分析、加法组合学和几何测度论”
  • 批准号:
    229818-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Discovery Grants Program - Individual
"Harmonic analysis, additive combinatorics and geometric measure theory"
“调和分析、加法组合学和几何测度论”
  • 批准号:
    229818-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 13.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了