Topics in PDE's and Quasiconformal Mappings
偏微分方程和拟共形映射主题
基本信息
- 批准号:9876881
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-01 至 2002-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-9876881LewisThe aim of this project is to investigate further some problemsoriginating from my work on (a) parabolic and elliptic measure,(b) quasiconformal mappings, and (c) regularity of PDE's. Under(a) I would like to know when the Dirichlet Problem has a solutionfor certain parabolic and elliptic PDE's with drag term. Given thatthe Dirichlet problem for these PDE's has a solution, I would like to know when the corresponding measures possess basic properties such as a doubling property. As for (b), I would like to construct more examples of domains which are quasiconformal to a sphere and for which harmonic measure and n - 1 dimensional Hausdorff measure on the boundary are equal. Finally under (c) I would like to know if the techniques used to prove reverse Holder inequalities for solutions to systems modeled on for the parabolic p Laplacian can be used onother PDE's such as the Navier Stokes equation. Many physical problems can be described in the language ofpartial differential equations (PDE's). Well known examples of suchequations arising in the 19 th century are Laplace's equation,the heat equation, the wave equation, Maxwell's equations, andthe Navier- Stokes' equation. Without question knowledge derivedfrom a theoretical study of these equations led to many fundamental technological advances during the 19 th and 20 th centuries.Three questions often asked by those who study PDE's is (a) does there exist a solution, (b) is it unique and (c) does it possess nice properites or is it regular? As for (a) and (b) one is often concerned with so called boundary values or boundary conditions for a solution in the domain of existence. So called overdetermined boundaryvalue problems have no solution whereas such classical problemsas the Dirichlet and Neumann problems have solutions if theboundary of the given domain and the boundary conditions are sufficiently nice (smooth). My work is concerned with how muchone can relax these assumptions and still get meaningful theorems. For example, during the last quarter century, many classicaltheorems for the Laplacian in smooth domains have been shown to hold in a class of rough domains called Lipschitz or sawtoothdomains. My coauthors and I have obtained the analogue of Lipschitz domains for the heat equation. Another avenue of investigation has been to consider questions (a)-(c) in a half space for rough parabolic PDE's. My work provides a model for certain free boundary problems such as ice melting (the Stefan problem).
DMS-9876881 Lewis的目的是从我对(a)抛物线和椭圆度措施的工作中进一步研究一些问题,(b)准文化映射,以及(c)PDE的规律性。在(a)下,我想知道何时Dirichlet问题具有解决方案的解决方案,其中某些抛物线和椭圆形PDE带有拖放术语。鉴于这些PDE的Dirichlet问题具有解决方案,我想知道何时相应的度量具有基本属性,例如倍增属性。至于(b),我想构建更多的域的示例,这些域是与球体的符合形式的域,并且在边界上的谐波测量和n -1维豪斯多夫度量相等。最终,在(c)下,我想知道是否可以证明对抛物线pde pde的系统(例如Navier Stokes方程)使用的解决方案的解决方案的解决方案是否反向持有人不等式。可以用各种微分方程(PDE)的语言描述许多物理问题。 19世纪出现的这种方程的众所周知的例子是拉普拉斯的方程,热方程,波动方程,麦克斯韦方程和纳维尔·斯托克斯方程。毫无疑问,知识从这些方程式的理论研究得出,导致了19世纪和20世纪的许多基本技术进步。研究PDE的人(a)经常问的三个问题(a)是否存在解决方案,(b)它是独一无二的吗? 至于(a)和(b)通常与存在域中的解决方案的所谓边界值或边界条件有关。所谓的过度确定的边界值问题没有解决方案,而这种经典问题则是迪利奇和诺伊曼问题如果给定域的包裹和边界条件足够好(平滑),则具有解决方案。我的工作关心的是有多少可以放松这些假设并仍然获得有意义的定理。例如,在上个四分之一世纪,在光滑领域中的Laplacian的许多古典理论已显示在一类称为Lipschitz或Sawtoothdomains的粗糙领域中。 我和我的合着者为热方程式获得了Lipschitz域的类似物。 调查的另一种途径是考虑(a) - (c)在半半空间中用于粗糙的抛物线PDE的问题。 我的工作为某些自由边界问题(例如冰熔化(Stefan问题))提供了模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Lewis其他文献
Rapid elimination of Carboxy-THC in a cohort of chronic cannabis users
在慢性大麻使用者群体中快速消除羧基-THC
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
John Lewis;A. Molnár;D. Allsop;J. Copeland;S. Fu - 通讯作者:
S. Fu
Inter-fraction variations in motion modeling using patient 4D-cone beam CT images
使用患者 4D 锥形束 CT 图像进行运动建模中的分数间变化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
S. Dhou;D. Ionascu;C. Williams;John Lewis - 通讯作者:
John Lewis
Vallisneria spiralis (eelweed)
- DOI:
10.1079/cabicompendium.56573 - 发表时间:
2022-01 - 期刊:
- 影响因子:0
- 作者:
John Lewis - 通讯作者:
John Lewis
Can the principles of cognitive acceleration be used to improve numerical reasoning in Science
认知加速原理可以用来改善科学中的数字推理吗
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
A. Clowser;S. Jones;John Lewis - 通讯作者:
John Lewis
John Lewis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Lewis', 18)}}的其他基金
Dimension of p Harmonic Measure and Related Topics
p 谐波测量的维数及相关主题
- 批准号:
1265996 - 财政年份:2013
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Applications of Boundary Harnack Inequalities for p Harmonic Functions to Problems in Harmonic Analysis, PDE, and Function Theory
p 调和函数的边界 Harnack 不等式在调和分析、偏微分方程和函数论问题中的应用
- 批准号:
0900291 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Problems of Existence, Uniqueness, and Dimension in Harmonic Analysis, Function Theory, and Partial Differential Equations
调和分析、函数论和偏微分方程中的存在性、唯一性和维数问题
- 批准号:
0552281 - 财政年份:2006
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Questions Concerning Parabolic Measure, Uniform Rectifiability and the Kato Square Root Problem
关于抛物线测度、均匀可整流性和加藤平方根问题的问题
- 批准号:
0139748 - 财政年份:2002
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
New Approaches to Maass Wave Forms in Mathematics and Physics
数学和物理中马斯波形的新方法
- 批准号:
0105314 - 财政年份:2001
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
U.S.-Korea Cooperative Science: Navier-Stokes Equations and Related Topics
美韩合作科学:纳维-斯托克斯方程及相关主题
- 批准号:
0090112 - 财政年份:2001
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Absolute Continuity of Parabolic Measure and Regularity of PDE's
数学科学:抛物线测度的绝对连续性和偏微分方程的正则性
- 批准号:
9531642 - 财政年份:1996
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Quasiregular Mappings and the Heat Equation
数学科学:拟正则映射和热方程
- 批准号:
9311539 - 财政年份:1993
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Geology and Geochemistry of the Maimon Formation and Associated Massive Sulfide Deposits, Central Dominican Republic
多米尼加共和国中部迈蒙组及相关大量硫化物矿床的地质和地球化学
- 批准号:
9107784 - 财政年份:1992
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mechanism of Action of Interferon-gamma
干扰素-γ的作用机制
- 批准号:
9105645 - 财政年份:1991
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似国自然基金
PDE12调控线粒体稳态和线粒体自噬介导口腔黏膜下纤维性变
- 批准号:82360731
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
小鼠病理性心室重构的磷酸二酯酶PDE10A靶向性PET可视化研究
- 批准号:82300567
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具核梭杆菌通过PDE2A调控糖酵解依赖性Th17/Treg失衡在溃疡性结肠炎中的作用及机制研究
- 批准号:82370542
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新型嘧啶酮类PDE1高选择性抑制剂的设计及抗血管性痴呆作用研究
- 批准号:22307031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
输入受限的时滞抛物型PDE-ODE级联系统的控制
- 批准号:62303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
- 批准号:
2349508 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
- 批准号:
2350128 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
ATD: An Edge-Based PDE Paradigm and Inverse Analysis for Spatiotemporal Information Diffusion and Threat Detection
ATD:时空信息扩散和威胁检测的基于边缘的偏微分方程范式和逆分析
- 批准号:
2220373 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
A PDE Framework for Sensing and Control of Metal Additive Manufacturing
用于金属增材制造传感和控制的偏微分方程框架
- 批准号:
2222250 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Coupling PDE-Based Computational Inversion and Learning Via Weighted Optimization
通过加权优化耦合基于偏微分方程的计算反演和学习
- 批准号:
2309802 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant