Theory and Applications of Multigrid and Domain Decomposition Methods in Computational Mechanics

计算力学中多重网格和域分解方法的理论与应用

基本信息

  • 批准号:
    9600133
  • 负责人:
  • 金额:
    $ 9.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-08-15 至 2000-01-31
  • 项目状态:
    已结题

项目摘要

9600133 Brenner In the application of finite element methods to problems in computational mechanics, difficulties such as the phenomenon of locking, the incompressibility constraint, cracked domains and higher order equations are encountered. By combining the techniques of nonconforming elements, macro elements, singular functions and mixed formulations, robust finite element methods that employ relatively few numbers of unknowns can be developed to overcome these difficulties. The investigator develops multigrid and domain decomposition algorithms for such finite element methods. Multigrid algorithms compute the solutions of systems of equations at a cost proportional to the number of unknowns and therefore are the most efficient methods for solving large systems. Domain decomposition algorithms distribute the computation over different parts of the physical domain and hence are very suitable for parallel computers. They are currently two of the major ideas in high performance computing. The results from this project can lead to fast solvers for problems in elasticity, plasticity, plates, beams, shells, and fluid mechanics. In particular, a new multigrid method is developed for the computation of stress intensity factors, which are important quantities in the study of the macroscopic phenomena of materials such as fatigues and fractures. These problems arise in the design of structures such as buildings, bridges, planes, and ships, and in the analysis of how structures perform. Hence the project provides tools for solving problems of manufacturing and of monitoring and renewing civil infrastructure.
小行星9600133 在有限元方法应用于计算力学问题时,会遇到诸如闭锁现象、不可压缩约束、裂纹区域和高阶方程等困难。 通过结合有限元、宏单元、奇异函数和混合公式等技术,可以开发出使用相对较少未知数的稳健有限元方法来克服这些困难。 研究人员开发多重网格和区域分解算法,这样的有限元方法。 多重网格算法计算方程组的解的成本与未知数的数量成正比,因此是求解大型系统的最有效的方法。 区域分解算法将计算分布在物理区域的不同部分上,因此非常适合于并行计算机。 它们是目前高性能计算中的两个主要思想。 从这个项目的结果可以导致弹性,塑性,板,梁,壳和流体力学问题的快速求解器。 特别是,一个新的多重网格方法的应力强度因子的计算,这是在材料的宏观现象,如疲劳和断裂的研究中的重要量。 这些问题出现在建筑物,桥梁,飞机和船舶等结构的设计中,以及结构如何执行的分析中。 因此,该项目提供了解决制造问题以及监测和更新民用基础设施的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susanne Brenner其他文献

Computer-assisted medical history taking prior to patient consultation in the outpatient care setting: a prospective pilot project
  • DOI:
    10.1186/s12913-024-12043-3
  • 发表时间:
    2024-12-18
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Roman Hauber;Maximilian Schirm;Mirco Lukas;Clemens Reitelbach;Jonas Brenig;Margret Breunig;Susanne Brenner;Stefan Störk;Frank Puppe
  • 通讯作者:
    Frank Puppe
HEART FAILURE MEDICATION IN THE EXTENDED RANDOMIZED INH STUDY: CLINICAL OUTCOMES ACCORDING TO PRESCRIPTION FREQUENCY AND DOSING OF GUIDELINE-RECOMMENDED DRUGS
  • DOI:
    10.1016/s0735-1097(13)60764-0
  • 发表时间:
    2013-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Guelmisal Gueder;Stefan Stoerk;Goetz Gelbrich;Susanne Brenner;Caroline Morbach;Dominik Berliner;Ertl Georg;Christiane E. Angermann
  • 通讯作者:
    Christiane E. Angermann
OBSTRUCTIVE VENTILATORY DISORDER IN HEART FAILURE: NOT ALWAYS COPD!
  • DOI:
    10.1016/s0735-1097(10)61263-6
  • 发表时间:
    2010-03-09
  • 期刊:
  • 影响因子:
  • 作者:
    Susanne Brenner;Gülmisal Güder;Kilian Frö;hlich;Gö;tz Gelbrich;Roland Jahns;Berthold Jany;Georg Ertl;Christiane E. Angermann;Stefan Stö;rk
  • 通讯作者:
    Stefan Stö;rk
PREVALENCE AND PROGNOSTIC IMPACT OF ANEMIA AND RENAL INSUFFICIENCY: RELATION TO HEART FAILURE SEVERITY
  • DOI:
    10.1016/s0735-1097(11)60374-4
  • 发表时间:
    2011-04-05
  • 期刊:
  • 影响因子:
  • 作者:
    Gulmisal Guder;Goetz Gelbrich;Susanne Brenner;Burkert Pieske;Rolf Wachter;Frank Edelmann;Bernhard Maisch;Sabine Pankuweit;Georg Ertl;Stefan Störk;Christiane E. Angermann
  • 通讯作者:
    Christiane E. Angermann

Susanne Brenner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susanne Brenner', 18)}}的其他基金

Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
  • 批准号:
    2208404
  • 财政年份:
    2022
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
Novel Finite Element Methods for Elliptic Distributed Optimal Control Problems
椭圆分布最优控制问题的新颖有限元方法
  • 批准号:
    1913035
  • 财政年份:
    2019
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
US Participation at the Twenty-fifth International Domain Decomposition Conference
美国参加第二十五届国际域名分解会议
  • 批准号:
    1759877
  • 财政年份:
    2018
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
Higher Order Variational Inequalities: Novel Finite Element Methods and Fast Solvers
高阶变分不等式:新颖的有限元方法和快速求解器
  • 批准号:
    1620273
  • 财政年份:
    2016
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Continuing Grant
Finite Element Methods for Higher Order Variational Inequalities
高阶变分不等式的有限元方法
  • 批准号:
    1319172
  • 财政年份:
    2013
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
Fast Interior Penalty Methods
快速内部惩罚方法
  • 批准号:
    1016332
  • 财政年份:
    2010
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
Novel Nonconforming Finite Element Methods for Maxwell's Equations
麦克斯韦方程组的新颖非协调有限元方法
  • 批准号:
    0713835
  • 财政年份:
    2007
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
Theory and Applications of Multigrid
多重网格理论与应用
  • 批准号:
    0738028
  • 财政年份:
    2007
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
Theory and Applications of Multigrid
多重网格理论与应用
  • 批准号:
    0311790
  • 财政年份:
    2003
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
Theory and Applications of Multigrid and Domain Decomposition Methods
多重网格和域分解方法的理论与应用
  • 批准号:
    0074246
  • 财政年份:
    2000
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Studentship
CAREER: Verifying Security and Privacy of Distributed Applications
职业:验证分布式应用程序的安全性和隐私
  • 批准号:
    2338317
  • 财政年份:
    2024
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Continuing Grant
IUCRC Phase III University of Colorado Boulder: Center for Membrane Applications, Science and Technology (MAST)
IUCRC 第三阶段科罗拉多大学博尔德分校:膜应用、科学与技术中心 (MAST)
  • 批准号:
    2310937
  • 财政年份:
    2024
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
  • 批准号:
    2417064
  • 财政年份:
    2024
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
  • 批准号:
    2349508
  • 财政年份:
    2024
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
CAS: Functionalization of Earth-Abundant, Molecular Group 4 Photosensitizers for Photochemical Applications
CAS:用于光化学应用的地球丰富的 4 分子族光敏剂的功能化
  • 批准号:
    2349986
  • 财政年份:
    2024
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
Flexible Thermoelectric Devices for Wearable Applications
适用于可穿戴应用的柔性热电器件
  • 批准号:
    2400221
  • 财政年份:
    2024
  • 资助金额:
    $ 9.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了