Fast Interior Penalty Methods

快速内部惩罚方法

基本信息

  • 批准号:
    1016332
  • 负责人:
  • 金额:
    $ 30.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

This project will develop fast numerical methods for fourth and higher order partial differential equations using the interior penalty approach. The interior penalty approach has advantages over the classical approaches that use conforming, nonconforming or mixed finite elements in terms of the computational complexity, the existence of natuaral hierarchies of elements, the preservation of the symetric positive definiteness of the continuous problem, and the ease of deriving convergent schemes for complicated problems. Another significant advantage of interior penalty methods for higher order problems is due to the fact that discontinuous finite elements for higher order problems are also suitable for lower order problems. Therefore multigrid algorithms for interior penalty methods can be developed recursively through the hierarchy of elliptic problems. Namely, multigrid algorithms for second order problems can be embedded naturally in multigrid algorithms for fourth order problems, which can then be embedded naturally in multigrid algorithms for sixth order problems, and so on. The performance of these multigrid methods for higher order problems is comparable to the performance of multigrid methods for second order problems. This project will initiate a comprehensive study of interior penalty methods for higher order problems together with multigrid, domain decomposition and adaptive algorithms that will provide fast solvers for the resulting discrete problems. The results of this project will make it feasible to solve problems of order six and higher on general domains. Applications of these methods to strain gradient elasticity, plate buckling, the Monge-Ampere equations and the Cahn-Hilliard equations will also be investigated.The fast algorithms developed in this project will make it practical for scientists and engineers to model complex phenomena by higher order partial differential equations. These algorithms will enhance the performance of numerical simulations in diverse areas such as structural mechanics, fluid mechanics, image processing, nanoscience, geometric optics, meteorology, optimal transport, differential geometry, and crystal growth, among many others.
本项目将利用内罚方法开发四阶和高阶偏微分方程的快速数值方法。内罚方法在计算复杂度、元素自然层次的存在性、连续问题的对称正确定性的保持性、复杂问题的收敛格式的易于导出等方面,都优于经典的一致性、非一致性或混合有限元方法。高阶问题的内罚方法的另一个显著优点是,高阶问题的不连续有限元也适用于低阶问题。因此,内罚方法的多网格算法可以通过椭圆问题的层次递归发展。也就是说,二阶问题的多网格算法可以自然嵌入到四阶问题的多网格算法中,而四阶问题的多网格算法又可以自然嵌入到六阶问题的多网格算法中,以此类推。这些多网格方法对高阶问题的性能与多网格方法对二阶问题的性能相当。该项目将启动高阶问题的内部惩罚方法的综合研究,以及多网格、区域分解和自适应算法,这些算法将为所产生的离散问题提供快速求解器。本课题的研究结果将为在一般域上求解六阶及更高阶的问题提供可行性。这些方法在应变梯度弹性、板屈曲、monge - amere方程和Cahn-Hilliard方程中的应用也将被研究。在这个项目中开发的快速算法将使科学家和工程师能够通过高阶偏微分方程来模拟复杂现象。这些算法将提高数值模拟在不同领域的性能,如结构力学、流体力学、图像处理、纳米科学、几何光学、气象学、最佳运输、微分几何和晶体生长等。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susanne Brenner其他文献

Computer-assisted medical history taking prior to patient consultation in the outpatient care setting: a prospective pilot project
  • DOI:
    10.1186/s12913-024-12043-3
  • 发表时间:
    2024-12-18
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Roman Hauber;Maximilian Schirm;Mirco Lukas;Clemens Reitelbach;Jonas Brenig;Margret Breunig;Susanne Brenner;Stefan Störk;Frank Puppe
  • 通讯作者:
    Frank Puppe
HEART FAILURE MEDICATION IN THE EXTENDED RANDOMIZED INH STUDY: CLINICAL OUTCOMES ACCORDING TO PRESCRIPTION FREQUENCY AND DOSING OF GUIDELINE-RECOMMENDED DRUGS
  • DOI:
    10.1016/s0735-1097(13)60764-0
  • 发表时间:
    2013-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Guelmisal Gueder;Stefan Stoerk;Goetz Gelbrich;Susanne Brenner;Caroline Morbach;Dominik Berliner;Ertl Georg;Christiane E. Angermann
  • 通讯作者:
    Christiane E. Angermann
OBSTRUCTIVE VENTILATORY DISORDER IN HEART FAILURE: NOT ALWAYS COPD!
  • DOI:
    10.1016/s0735-1097(10)61263-6
  • 发表时间:
    2010-03-09
  • 期刊:
  • 影响因子:
  • 作者:
    Susanne Brenner;Gülmisal Güder;Kilian Frö;hlich;Gö;tz Gelbrich;Roland Jahns;Berthold Jany;Georg Ertl;Christiane E. Angermann;Stefan Stö;rk
  • 通讯作者:
    Stefan Stö;rk
PREVALENCE AND PROGNOSTIC IMPACT OF ANEMIA AND RENAL INSUFFICIENCY: RELATION TO HEART FAILURE SEVERITY
  • DOI:
    10.1016/s0735-1097(11)60374-4
  • 发表时间:
    2011-04-05
  • 期刊:
  • 影响因子:
  • 作者:
    Gulmisal Guder;Goetz Gelbrich;Susanne Brenner;Burkert Pieske;Rolf Wachter;Frank Edelmann;Bernhard Maisch;Sabine Pankuweit;Georg Ertl;Stefan Störk;Christiane E. Angermann
  • 通讯作者:
    Christiane E. Angermann

Susanne Brenner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susanne Brenner', 18)}}的其他基金

Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
  • 批准号:
    2208404
  • 财政年份:
    2022
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant
Novel Finite Element Methods for Elliptic Distributed Optimal Control Problems
椭圆分布最优控制问题的新颖有限元方法
  • 批准号:
    1913035
  • 财政年份:
    2019
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant
US Participation at the Twenty-fifth International Domain Decomposition Conference
美国参加第二十五届国际域名分解会议
  • 批准号:
    1759877
  • 财政年份:
    2018
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant
Higher Order Variational Inequalities: Novel Finite Element Methods and Fast Solvers
高阶变分不等式:新颖的有限元方法和快速求解器
  • 批准号:
    1620273
  • 财政年份:
    2016
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Continuing Grant
Finite Element Methods for Higher Order Variational Inequalities
高阶变分不等式的有限元方法
  • 批准号:
    1319172
  • 财政年份:
    2013
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant
Novel Nonconforming Finite Element Methods for Maxwell's Equations
麦克斯韦方程组的新颖非协调有限元方法
  • 批准号:
    0713835
  • 财政年份:
    2007
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant
Theory and Applications of Multigrid
多重网格理论与应用
  • 批准号:
    0738028
  • 财政年份:
    2007
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant
Theory and Applications of Multigrid
多重网格理论与应用
  • 批准号:
    0311790
  • 财政年份:
    2003
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant
Theory and Applications of Multigrid and Domain Decomposition Methods
多重网格和域分解方法的理论与应用
  • 批准号:
    0074246
  • 财政年份:
    2000
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant
Theory and Applications of Multigrid and Domain Decomposition Methods in Computational Mechanics
计算力学中多重网格和域分解方法的理论与应用
  • 批准号:
    9600133
  • 财政年份:
    1996
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant

相似海外基金

Explainable AI (XAI): A Creative Copilot for Interior Designers
可解释的人工智能(XAI):室内设计师的创意副驾驶
  • 批准号:
    10092978
  • 财政年份:
    2024
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Collaborative R&D
REU Site: Dynamic Earth in the 21st Century: Undergraduate Research on the Evolution of Earth's Interior, Surface and Climate
REU 网站:21 世纪的动态地球:地球内部、表面和气候演化的本科生研究
  • 批准号:
    2243857
  • 财政年份:
    2023
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant
Machinery-control Integration for Accident Prevention in Auto-transport of Building Interior Finishing Materials under Complicated Conditions of Construction Sites
工地复杂条件下建筑室内装饰材料自动运输事故的机控一体化预防
  • 批准号:
    23H01370
  • 财政年份:
    2023
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Analysis of the Black Hole Interior and Strong Cosmic Censorship
黑洞内部分析和强大的宇宙审查
  • 批准号:
    2247376
  • 财政年份:
    2023
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant
Theatre and Autism: Staging the Interior
剧院与自闭症:室内布置
  • 批准号:
    2862710
  • 财政年份:
    2023
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Studentship
NSF I-Corps Hub (Track 1): Interior Northeast Region
NSF I-Corps 中心(轨道 1):东北内陆地区
  • 批准号:
    2229430
  • 财政年份:
    2023
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Cooperative Agreement
Conference: Interior of the Earth Gordon Research Conference and Seminar
会议:地球内部戈登研究会议及研讨会
  • 批准号:
    2317347
  • 财政年份:
    2023
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant
Conference: Leveraging a Statewide Database for better Collaboration and Coordination of Observing efforts Across Alaska: A Stream Temperature Training in Interior Alaska
会议:利用全州数据库更好地协作和协调整个阿拉斯加的观测工作:阿拉斯加内陆地区的流温度培训
  • 批准号:
    2323562
  • 财政年份:
    2023
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant
Physical activity and clinical outcomes in children with type 1 diabetes in the BC Interior
BC 省内陆地区 1 型糖尿病儿童的体力活动和临床结果
  • 批准号:
    486997
  • 财政年份:
    2023
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Miscellaneous Programs
CAREER: Reconstructing Subsistence, Diet Breadth, and Paleoclimate in Interior Alaska during Social and Climatic Transitions
职业:在社会和气候转型期间重建阿拉斯加内陆地区的生存、饮食广度和古气候
  • 批准号:
    2236813
  • 财政年份:
    2023
  • 资助金额:
    $ 30.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了