Novel Finite Element Methods for Elliptic Distributed Optimal Control Problems
椭圆分布最优控制问题的新颖有限元方法
基本信息
- 批准号:1913035
- 负责人:
- 金额:$ 26.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimal control problems with elliptic partial differential equation constraints appear in many optimal design processes in engineering and science. In these problems the state (output) is connected to the control (input) through an elliptic partial differential equation, and the objective is to find the control that will produce a desired state in an optimal fashion. The proposed research is on the design, analysis and efficient implementation of novel numerical methods for such problems, with applications to mechanical engineering, electrical engineering and materials science.Traditional numerical approaches for these optimal control problems treat the control as the primary unknown. The resulting finite element methods only involve low order elements. The convergence analysis, where the error estimates for the control, the state and the adjoint state are intertwined, is substantially more complicated than the convergence analysis for elliptic boundary value problems. In contrast, the approach in the proposed research treats the state as the primary unknown by reformulating the optimal control problems as variational inequalities for the state. A new analytical framework developed recently by the PI and the Co-PI shows that the convergence analysis for these elliptic variational inequalities can be obtained by using the same tools for the convergence analysis for elliptic boundary value problems. Consequently many finite element methods originally intended for elliptic boundary value problems can also be applied to the optimal control problems constrained by elliptic partial differential equations. The goal of the proposed research is to apply this new insight to design novel finite element methods for optimal control problems with general cost functionals, problems with semi-linear second order and fourth order elliptic partial differential equation constraints, problems for electromagnetics and problems with rough coefficients that appear in materials science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
椭圆型偏微分方程约束的最优控制问题出现在工程和科学中的许多优化设计过程中。 在这些问题中,状态(输出)通过椭圆偏微分方程与控制(输入)相连,目标是找到以最佳方式产生所需状态的控制。 本论文的主要研究内容是设计、分析和有效实现新的数值方法来求解此类问题,并将其应用于机械工程、电气工程和材料科学等领域。所得到的有限元方法只涉及低阶单元。 收敛性分析,其中的控制,状态和伴随状态的误差估计交织在一起,是远远比椭圆边值问题的收敛性分析复杂。相比之下,在所提出的研究方法将状态作为主要的未知数,通过重新制定的最优控制问题的状态变分不等式。PI和Co-PI最近提出的一个新的分析框架表明,这些椭圆变分不等式的收敛性分析可以通过使用椭圆边值问题收敛性分析的相同工具来获得. 因此,许多原来用于椭圆边值问题的有限元方法也可以应用于椭圆型偏微分方程约束的最优控制问题。本研究的目标是将这一新的认识应用于设计新的有限元方法来求解具有一般代价泛函的最优控制问题,具有半线性二阶和四阶椭圆型偏微分方程约束的问题,该奖项反映了NSF的法定使命,并被认为是值得支持的,使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive C0 interior penalty methods for Hamilton–Jacobi–Bellman equations with Cordes coefficients
具有 Cordes 系数的 Hamilton-Jacobi-Bellman 方程的自适应 C0 内罚方法
- DOI:10.1016/j.cam.2020.113241
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Brenner, Susanne C.;Kawecki, Ellya L.
- 通讯作者:Kawecki, Ellya L.
Additive Schwarz Preconditioners for ?0 Interior Penalty Methods for a State Constrained Elliptic Distributed Optimal Control Problem
状态约束椭圆分布式最优控制问题的 ?0 内罚方法的加性 Schwarz 预条件子
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Brenner, Susanne C.;Sung, Li-yeng;Wang, Kening
- 通讯作者:Wang, Kening
A cubic C0 interior penalty method for elliptic distributed optimal control problems with pointwise state and control constraints
- DOI:10.1016/j.rinam.2020.100119
- 发表时间:2020-08
- 期刊:
- 影响因子:2
- 作者:S. C. Brenner;L. Sung;Zhiyu Tan
- 通讯作者:S. C. Brenner;L. Sung;Zhiyu Tan
A General Superapproximation Result
一般的超近似结果
- DOI:10.1515/cmam-2020-0120
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Brenner, Susanne C.
- 通讯作者:Brenner, Susanne C.
Finite element methods for one dimensional elliptic distributed optimal control problems with pointwise constraints on the derivative of the state
- DOI:10.1007/s11081-020-09491-1
- 发表时间:2020-01
- 期刊:
- 影响因子:2.1
- 作者:S. C. Brenner;L. Sung;W. Wollner
- 通讯作者:S. C. Brenner;L. Sung;W. Wollner
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susanne Brenner其他文献
Computer-assisted medical history taking prior to patient consultation in the outpatient care setting: a prospective pilot project
- DOI:
10.1186/s12913-024-12043-3 - 发表时间:
2024-12-18 - 期刊:
- 影响因子:3.000
- 作者:
Roman Hauber;Maximilian Schirm;Mirco Lukas;Clemens Reitelbach;Jonas Brenig;Margret Breunig;Susanne Brenner;Stefan Störk;Frank Puppe - 通讯作者:
Frank Puppe
HEART FAILURE MEDICATION IN THE EXTENDED RANDOMIZED INH STUDY: CLINICAL OUTCOMES ACCORDING TO PRESCRIPTION FREQUENCY AND DOSING OF GUIDELINE-RECOMMENDED DRUGS
- DOI:
10.1016/s0735-1097(13)60764-0 - 发表时间:
2013-03-12 - 期刊:
- 影响因子:
- 作者:
Guelmisal Gueder;Stefan Stoerk;Goetz Gelbrich;Susanne Brenner;Caroline Morbach;Dominik Berliner;Ertl Georg;Christiane E. Angermann - 通讯作者:
Christiane E. Angermann
OBSTRUCTIVE VENTILATORY DISORDER IN HEART FAILURE: NOT ALWAYS COPD!
- DOI:
10.1016/s0735-1097(10)61263-6 - 发表时间:
2010-03-09 - 期刊:
- 影响因子:
- 作者:
Susanne Brenner;Gülmisal Güder;Kilian Frö;hlich;Gö;tz Gelbrich;Roland Jahns;Berthold Jany;Georg Ertl;Christiane E. Angermann;Stefan Stö;rk - 通讯作者:
Stefan Stö;rk
PREVALENCE AND PROGNOSTIC IMPACT OF ANEMIA AND RENAL INSUFFICIENCY: RELATION TO HEART FAILURE SEVERITY
- DOI:
10.1016/s0735-1097(11)60374-4 - 发表时间:
2011-04-05 - 期刊:
- 影响因子:
- 作者:
Gulmisal Guder;Goetz Gelbrich;Susanne Brenner;Burkert Pieske;Rolf Wachter;Frank Edelmann;Bernhard Maisch;Sabine Pankuweit;Georg Ertl;Stefan Störk;Christiane E. Angermann - 通讯作者:
Christiane E. Angermann
Susanne Brenner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susanne Brenner', 18)}}的其他基金
Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
- 批准号:
2208404 - 财政年份:2022
- 资助金额:
$ 26.23万 - 项目类别:
Standard Grant
US Participation at the Twenty-fifth International Domain Decomposition Conference
美国参加第二十五届国际域名分解会议
- 批准号:
1759877 - 财政年份:2018
- 资助金额:
$ 26.23万 - 项目类别:
Standard Grant
Higher Order Variational Inequalities: Novel Finite Element Methods and Fast Solvers
高阶变分不等式:新颖的有限元方法和快速求解器
- 批准号:
1620273 - 财政年份:2016
- 资助金额:
$ 26.23万 - 项目类别:
Continuing Grant
Finite Element Methods for Higher Order Variational Inequalities
高阶变分不等式的有限元方法
- 批准号:
1319172 - 财政年份:2013
- 资助金额:
$ 26.23万 - 项目类别:
Standard Grant
Novel Nonconforming Finite Element Methods for Maxwell's Equations
麦克斯韦方程组的新颖非协调有限元方法
- 批准号:
0713835 - 财政年份:2007
- 资助金额:
$ 26.23万 - 项目类别:
Standard Grant
Theory and Applications of Multigrid and Domain Decomposition Methods
多重网格和域分解方法的理论与应用
- 批准号:
0074246 - 财政年份:2000
- 资助金额:
$ 26.23万 - 项目类别:
Standard Grant
Theory and Applications of Multigrid and Domain Decomposition Methods in Computational Mechanics
计算力学中多重网格和域分解方法的理论与应用
- 批准号:
9600133 - 财政年份:1996
- 资助金额:
$ 26.23万 - 项目类别:
Standard Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 26.23万 - 项目类别:
Standard Grant
Finite Element Assessment of Novel High-Performance Building Panels
新型高性能建筑板材的有限元评估
- 批准号:
567551-2021 - 财政年份:2022
- 资助金额:
$ 26.23万 - 项目类别:
Alliance Grants
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
- 批准号:
2208321 - 财政年份:2022
- 资助金额:
$ 26.23万 - 项目类别:
Standard Grant
A novel hybrid finite-discrete element modeling approach to assess the impact of drilling-induced core damage on laboratory properties of hard brittle rocks
一种新颖的混合有限离散元建模方法,用于评估钻井引起的岩心损伤对硬脆性岩石实验室特性的影响
- 批准号:
580759-2022 - 财政年份:2022
- 资助金额:
$ 26.23万 - 项目类别:
Alliance Grants
Novel imaging metrics and finite element methods for understanding role of bone in osteoarthritis
用于了解骨在骨关节炎中的作用的新颖成像指标和有限元方法
- 批准号:
RGPIN-2015-06420 - 财政年份:2021
- 资助金额:
$ 26.23万 - 项目类别:
Discovery Grants Program - Individual
Finite Element Assessment of Novel High-Performance Building Panels
新型高性能建筑板材的有限元评估
- 批准号:
567551-2021 - 财政年份:2021
- 资助金额:
$ 26.23万 - 项目类别:
Alliance Grants
Development of a 3D anatomical database of the human lower limb using novel dissection, digitization, and scanning techniques for the construction of a high fidelity finite element model to simulate n
使用新颖的解剖、数字化和扫描技术开发人体下肢 3D 解剖数据库,以构建高保真度有限元模型来模拟
- 批准号:
565027-2021 - 财政年份:2021
- 资助金额:
$ 26.23万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Novel imaging metrics and finite element methods for understanding role of bone in osteoarthritis
用于了解骨在骨关节炎中的作用的新颖成像指标和有限元方法
- 批准号:
RGPIN-2015-06420 - 财政年份:2020
- 资助金额:
$ 26.23万 - 项目类别:
Discovery Grants Program - Individual
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
- 批准号:
2009366 - 财政年份:2020
- 资助金额:
$ 26.23万 - 项目类别:
Standard Grant
The application of high resolution peripheral quantitative computed tomography and finite element modeling as a novel diagnostic tool for osteoporosis and fracture risk
高分辨率外周定量计算机断层扫描和有限元建模的应用作为骨质疏松症和骨折风险的新型诊断工具
- 批准号:
519724-2018 - 财政年份:2020
- 资助金额:
$ 26.23万 - 项目类别:
Postgraduate Scholarships - Doctoral