Representations of Quantum Groups, Special Functions, and Geometry
量子群、特殊函数和几何的表示
基本信息
- 批准号:9610201
- 负责人:
- 金额:$ 6.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 1999-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
KIRILLOV This research is concerned with the representation theory of quantum groups and its relation with combinatorics and mathematical physics. The principal investigator will work on two problems. The first problem concerns a geometric realization of Lusztig's canonical basis, using the identification of modules over a quantum group with the homology of a certain local system on the configuration space, which is due to Schechtman and Varchenko. Such a realization would reveal a new deep relation between combinatorics and the geometric structures of mathematical physics. The second continues the study of special functions appearing in representation theory and related combinatorial identities. In particular, the principal investigator will work on the generalization of the inner product identities for Macdonald's polynomials to affine root systems, and on on further properties of this inner product, such as positivity and its relation with the inner product on the space of conformal blocks in conformal field theory. This study is in the general area of representation theory of Lie algebras and related objects, and is important both for mathematics and physics.
本研究涉及量子群的表示理论及其与组合学和数学物理的关系。首席研究员将研究两个问题。第一个问题涉及到Lusztig正则基的几何实现,利用具有组态空间上某个局部系统同调的量子群上的模的识别,这是由于Schechtman和Varchenko。这种认识将揭示组合学与数学物理的几何结构之间的一种新的深刻关系。第二部分继续研究在表示理论和相关组合恒等式中出现的特殊函数。特别地,主要研究者将研究Macdonald多项式内积恒等式到仿射根的推广,以及该内积的进一步性质,如正性及其与共形场论中共形块空间内积的关系。本研究属于李代数及其相关对象的表示理论的一般领域,具有重要的数学和物理意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Lusztig其他文献
Singular Supports for Character Sheaves on a Group Compactification
- DOI:
10.1007/s00039-007-0641-8 - 发表时间:
2008-01-30 - 期刊:
- 影响因子:2.500
- 作者:
Xuhua He;George Lusztig - 通讯作者:
George Lusztig
George Lusztig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Lusztig', 18)}}的其他基金
Representations of finite reductive groups, character sheaves and theory of total positivity
有限约简群的表示、特征轮和总正性理论
- 批准号:
2153741 - 财政年份:2022
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
- 批准号:
1855773 - 财政年份:2019
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
- 批准号:
1566618 - 财政年份:2016
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant
Representations of Reductive Groups, May 19-23, 2014.
还原基团的表示,2014 年 5 月 19-23 日。
- 批准号:
1362703 - 财政年份:2014
- 资助金额:
$ 6.35万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
- 批准号:
1303060 - 财政年份:2013
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and quantum groups
数学科学:仿射 Hecke 代数、有限约简群和量子群表示论中的几何方法
- 批准号:
0758262 - 财政年份:2008
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant
Geometric methods in representation theory
表示论中的几何方法
- 批准号:
0243345 - 财政年份:2003
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant
Geometric Methods in the Representation Theory of Affine Hecke Algebras and Quantum Groups
仿射Hecke代数和量子群表示论中的几何方法
- 批准号:
9732805 - 财政年份:1998
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant
Mathematical Sciences: Representations of Affine Hecke Algebras and Quantum Groups
数学科学:仿射赫克代数和量子群的表示
- 批准号:
9500016 - 财政年份:1995
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant
Mathematical Sciences: Representations of Semisimple Groups over Finite Fields and Quantum Groups
数学科学:有限域和量子群上的半单群的表示
- 批准号:
9207285 - 财政年份:1992
- 资助金额:
$ 6.35万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Study on the representations of affine quantum groups using quivers with potentials
用势颤振表示仿射量子群的研究
- 批准号:
23K12955 - 财政年份:2023
- 资助金额:
$ 6.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Bruhat-Tits theory in the representations of p-adic groups, and post-quantum cryptography
p-adic 群表示中的 Bruhat-Tits 理论和后量子密码学
- 批准号:
RGPIN-2020-05020 - 财政年份:2022
- 资助金额:
$ 6.35万 - 项目类别:
Discovery Grants Program - Individual
Geometric quantum representations of discrete groups and their extension to higher category
离散群的几何量子表示及其向更高类别的扩展
- 批准号:
21H00986 - 财政年份:2021
- 资助金额:
$ 6.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bruhat-Tits theory in the representations of p-adic groups, and post-quantum cryptography
p-adic 群表示中的 Bruhat-Tits 理论和后量子密码学
- 批准号:
RGPIN-2020-05020 - 财政年份:2021
- 资助金额:
$ 6.35万 - 项目类别:
Discovery Grants Program - Individual
Bruhat-Tits theory in the representations of p-adic groups, and post-quantum cryptography
p-adic 群表示中的 Bruhat-Tits 理论和后量子密码学
- 批准号:
RGPIN-2020-05020 - 财政年份:2020
- 资助金额:
$ 6.35万 - 项目类别:
Discovery Grants Program - Individual
Representations of multiplier algebras associated to locally compact quantum groups
与局部紧量子群相关的乘子代数的表示
- 批准号:
503989-2017 - 财政年份:2019
- 资助金额:
$ 6.35万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Representations of multiplier algebras associated to locally compact quantum groups
与局部紧量子群相关的乘子代数的表示
- 批准号:
503989-2017 - 财政年份:2018
- 资助金额:
$ 6.35万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Gelfand-Tsetlin basis and geometric representations of elliptic quantum groups
椭圆量子群的 Gelfand-Tsetlin 基和几何表示
- 批准号:
17K05195 - 财政年份:2017
- 资助金额:
$ 6.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representations of multiplier algebras associated to locally compact quantum groups
与局部紧量子群相关的乘子代数的表示
- 批准号:
503989-2017 - 财政年份:2017
- 资助金额:
$ 6.35万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Categorical representations of Lie algebras and quantum groups and applications to modular representations
李代数和量子群的分类表示及其在模表示中的应用
- 批准号:
17K14154 - 财政年份:2017
- 资助金额:
$ 6.35万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




