Mathematical Sciences: Representations of Semisimple Groups over Finite Fields and Quantum Groups
数学科学:有限域和量子群上的半单群的表示
基本信息
- 批准号:9207285
- 负责人:
- 金额:$ 37.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-07-01 至 1995-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is concerned with the representations of semisimple groups over finite fields and quantum groups. The principal investigator will study characters of finite dimensional irreducible representations of quantum groups at roots of 1. He will also study character sheaves and their relation with the irreducible characters of finite groups of Lie type. Finally, he will study canonical bases of enveloping algebras. One of the postdoctoral associates will work on Lang's conjecture in positive characteristic and Chow groups of some moduli spaces of curves. Another postdoctoral associate will work on a proof of the Lefschetz Trace Formula for algebraic stacks and the conjecture of Weil on Tamagawa Numbers over function fields. Another postdoctoral associate will study both the applications of analytic tools to the understanding of quantum groups and the use of quantum groups to approach questions of analytic interest. Quantum groups are a new area of research for both mathematicians and physicists. On the mathematical side, it combines three of the oldest areas of "pure" mathematics, algebra, analysis and geometry, yet it is of great interest to physicists working on conformal quantum field theory.
本文主要研究有限域和量子群上的半单群的表示。主要研究人员将研究量子群在1的根处的有限维不可约表示的特征,他还将研究特征标层及其与李型有限群的不可约特征的关系。最后,他将学习包络代数的标准基。其中一位博士后助理将在曲线的一些模空间的正特征和Chow群中研究Lang猜想。另一位博士后助理将致力于证明代数堆栈的Lefschetz迹公式和函数域上关于Tamagawa数的Weil猜想。另一名博士后助理将学习分析工具在理解量子群中的应用,以及使用量子群来处理感兴趣的分析问题。量子群对数学家和物理学家来说都是一个新的研究领域。在数学方面,它结合了代数、分析和几何这三个最古老的纯数学领域,但它对致力于共形量子场论的物理学家非常感兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Lusztig其他文献
Singular Supports for Character Sheaves on a Group Compactification
- DOI:
10.1007/s00039-007-0641-8 - 发表时间:
2008-01-30 - 期刊:
- 影响因子:2.500
- 作者:
Xuhua He;George Lusztig - 通讯作者:
George Lusztig
George Lusztig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Lusztig', 18)}}的其他基金
Representations of finite reductive groups, character sheaves and theory of total positivity
有限约简群的表示、特征轮和总正性理论
- 批准号:
2153741 - 财政年份:2022
- 资助金额:
$ 37.2万 - 项目类别:
Standard Grant
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
- 批准号:
1855773 - 财政年份:2019
- 资助金额:
$ 37.2万 - 项目类别:
Standard Grant
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
- 批准号:
1566618 - 财政年份:2016
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
Representations of Reductive Groups, May 19-23, 2014.
还原基团的表示,2014 年 5 月 19-23 日。
- 批准号:
1362703 - 财政年份:2014
- 资助金额:
$ 37.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
- 批准号:
1303060 - 财政年份:2013
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and quantum groups
数学科学:仿射 Hecke 代数、有限约简群和量子群表示论中的几何方法
- 批准号:
0758262 - 财政年份:2008
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
Geometric methods in representation theory
表示论中的几何方法
- 批准号:
0243345 - 财政年份:2003
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
Geometric Methods in the Representation Theory of Affine Hecke Algebras and Quantum Groups
仿射Hecke代数和量子群表示论中的几何方法
- 批准号:
9732805 - 财政年份:1998
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
Representations of Quantum Groups, Special Functions, and Geometry
量子群、特殊函数和几何的表示
- 批准号:
9610201 - 财政年份:1997
- 资助金额:
$ 37.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Representations of Affine Hecke Algebras and Quantum Groups
数学科学:仿射赫克代数和量子群的表示
- 批准号:
9500016 - 财政年份:1995
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences - Unitary Representations of Reductive Groups
NSF/CBMS 数学科学区域会议 - 还原群的酉表示
- 批准号:
1137423 - 财政年份:2012
- 资助金额:
$ 37.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
- 批准号:
9996393 - 财政年份:1999
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
- 批准号:
9896186 - 财政年份:1998
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unipotent Representations of p-Adic Groups
数学科学:p-Adic 群的单能表示
- 批准号:
9896279 - 财政年份:1998
- 资助金额:
$ 37.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Unitary Representations and Zuckerman Modules
数学科学:酉表示和祖克曼模块
- 批准号:
9706922 - 财政年份:1997
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
Mathematical Sciences/GIG: Lie Groups, Algebras and Their Representations
数学科学/GIG:李群、代数及其表示
- 批准号:
9709820 - 财政年份:1997
- 资助金额:
$ 37.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Representations and Cohomology of Groups
数学科学:群的表示和上同调
- 批准号:
9700416 - 财政年份:1997
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Microlocal Character Theory for Representations of Classical Lie Groups
数学科学:经典李群表示的微局部特征理论
- 批准号:
9622610 - 财政年份:1996
- 资助金额:
$ 37.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Unipotent Representations of p-Adic Groups
数学科学:p-Adic 群的单能表示
- 批准号:
9622343 - 财政年份:1996
- 资助金额:
$ 37.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
- 批准号:
9531957 - 财政年份:1996
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant














{{item.name}}会员




