Mathematical Sciences: Continuous Complexity and Dynamical Systems
数学科学:连续复杂性和动态系统
基本信息
- 批准号:9616920
- 负责人:
- 金额:$ 6.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-15 至 2001-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Shub 9616920 The investigator continues studies of the complexity theory of continuous problems and dynamical systems. The main issues are: 1) the construction of a theory of computation and complexity which speaks to scientific computation and numerical analysis, and 2) the extent of validity of statistical robustness as a property of dynamical systems, especially chaotic dynamical systems. The research involved is of interest to a large class of mathematicians and has implications for the relations between abstract mathematics and computer science on the one hand and abstract mathematics and physics and engineering on the other. Complexity theory develops bounds on how much work a method requires to produce the solution to a typical problem in a class of problems. Common and important examples include methods to find the solutions of a system of linear or nonlinear equations. Part of the project indeed at aims at just this issue. Equation solving is at the heart of much of mathematics and, together with its computational aspects, is a main way that mathematics is used by engineering, physics, economics, and many other disciplines. The other part of the project studies questions about much alike certain kinds of chaotic systems may be. Predicting the specific behavior of a chaotic system is difficult, because small errors in any measurement of the system are amplified. But chaotic systems may be relatively nice in a statistical sense; if so, then sets of samples measurements may provide useful information about the system's behavior even though any single measurement is error-prone. The investigator studies these properties in dynamical systems and particularly in chaotic systems. There are important implications for the statistical analysis of chaotic systems --- hence practical consequences for weather and climate studies, agriculture, and engineering.
舒布9616920,研究者继续研究连续问题和动力系统的复杂性理论。主要问题是:1)建立一个涉及科学计算和数值分析的计算和复杂性理论,以及2)作为动力系统,特别是混沌动力系统的一种属性的统计稳健性的有效性程度。这项研究涉及到一大批数学家,并对抽象数学和计算机科学之间的关系以及抽象数学和物理与工程之间的关系产生了影响。复杂性理论发展了一种方法需要多少工作才能为一类问题中的典型问题提供解决方案的界限。常见且重要的例子包括求解线性或非线性方程组的方法。该项目的一部分实际上就是针对这个问题。方程求解是许多数学的核心,与它的计算方面一起,是工程、物理、经济学和许多其他学科使用数学的主要方式。该项目的另一部分研究关于某些类型的混沌系统可能非常相似的问题。预测混沌系统的具体行为是困难的,因为系统的任何测量中的小误差都会被放大。但从统计意义上讲,混沌系统可能是相对较好的;如果是这样,那么样本测量集可能会提供有关系统行为的有用信息,即使任何单一测量都容易出错。研究者研究了动力系统中的这些性质,特别是在混沌系统中。这对混沌系统的统计分析有重要的影响-因此对天气和气候研究、农业和工程学的实际影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Shub其他文献
A Note on the Finite Variance of the Averaging Function for Polynomial System Solving
- DOI:
10.1007/s10208-009-9054-4 - 发表时间:
2009-10-03 - 期刊:
- 影响因子:2.700
- 作者:
Carlos Beltrán;Michael Shub - 通讯作者:
Michael Shub
Axiom A actions
- DOI:
10.1007/bf01405171 - 发表时间:
1975-02-01 - 期刊:
- 影响因子:3.600
- 作者:
Charles Pugh;Michael Shub - 通讯作者:
Michael Shub
Erratum to: Smale’s Fundamental Theorem of Algebra Reconsidered
- DOI:
10.1007/s10208-014-9211-2 - 发表时间:
2014-06-14 - 期刊:
- 影响因子:2.700
- 作者:
Diego Armentano;Michael Shub - 通讯作者:
Michael Shub
Mysteries of mathematics and computation
- DOI:
10.1007/bf03026609 - 发表时间:
2009-01-16 - 期刊:
- 影响因子:0.400
- 作者:
Michael Shub - 通讯作者:
Michael Shub
Cusp Bifurcation in Metastatic Breast Cancer Cells
转移性乳腺癌细胞的尖点分叉
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Brenda Delamonica;Gábor Balázsi;Michael Shub - 通讯作者:
Michael Shub
Michael Shub的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Shub', 18)}}的其他基金
Mathematical Sciences: Continuous Complexity and Dynamics
数学科学:连续复杂性和动力学
- 批准号:
9303372 - 财政年份:1993
- 资助金额:
$ 6.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Systems and Complexity
数学科学:动力系统和复杂性
- 批准号:
8900443 - 财政年份:1989
- 资助金额:
$ 6.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamical Systems, Geometry, Complexity and Topology
数学科学:动力系统、几何、复杂性和拓扑
- 批准号:
8601550 - 财政年份:1986
- 资助金额:
$ 6.1万 - 项目类别:
Continuing Grant
Dynamical Systems and Differential Geometry
动力系统和微分几何
- 批准号:
8313076 - 财政年份:1984
- 资助金额:
$ 6.1万 - 项目类别:
Standard Grant
Dynamical Systems and Topology (Mathematical Sciences)
动力系统和拓扑(数学科学)
- 批准号:
8201267 - 财政年份:1982
- 资助金额:
$ 6.1万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Advanced Computational Stochastic Dynamic Programming for Continuous Time Problems
数学科学:连续时间问题的高级计算随机动态规划
- 批准号:
9626692 - 财政年份:1996
- 资助金额:
$ 6.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Modeling in Continuous Time, Delayed Autoregressive Processes, and Chaos
数学科学:连续时间非线性建模、延迟自回归过程和混沌
- 批准号:
9504798 - 财政年份:1995
- 资助金额:
$ 6.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Singular Continuous Spectum and Localization Type Effects if Disordered Systems
数学科学:无序系统的奇异连续谱和局域化效应
- 批准号:
9501265 - 财政年份:1995
- 资助金额:
$ 6.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Continuous Complexity and Dynamics
数学科学:连续复杂性和动力学
- 批准号:
9303372 - 财政年份:1993
- 资助金额:
$ 6.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Advanced Computational Stochastic Dynamic Programming for Continuous Time Problems
数学科学:连续时间问题的高级计算随机动态规划
- 批准号:
9301107 - 财政年份:1993
- 资助金额:
$ 6.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Classical and Quantum Lattice Systems with Continuous Groups of Symmetry
数学科学:具有连续对称群的经典和量子晶格系统
- 批准号:
9102639 - 财政年份:1991
- 资助金额:
$ 6.1万 - 项目类别:
Continuing grant
Mathematical Sciences: Models for the Spread of HIV; Equations with Piecewise Continuous Argument; Dynamics of Discretizations
数学科学:艾滋病毒传播模型;
- 批准号:
8807478 - 财政年份:1988
- 资助金额:
$ 6.1万 - 项目类别:
Continuing grant
Mathematical Sciences: Nonlinear Differential Equations: A Qualitative and Numerical Study of Continuous and Discrete Systems
数学科学:非线性微分方程:连续和离散系统的定性和数值研究
- 批准号:
8501311 - 财政年份:1985
- 资助金额:
$ 6.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Inference Problems for Continuous Time Markov Processes
数学科学:连续时间马尔可夫过程的推理问题
- 批准号:
8505774 - 财政年份:1985
- 资助金额:
$ 6.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Discrete and Continuous Conservative Dynamical Systems
数学科学:离散和连续保守动力系统
- 批准号:
8301134 - 财政年份:1983
- 资助金额:
$ 6.1万 - 项目类别:
Continuing grant