Continuous Complexity and Dynamics
持续的复杂性和动态性
基本信息
- 批准号:9988809
- 负责人:
- 金额:$ 5.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-15 至 2005-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract :The Principal Investigator is Michael Shub. Shub and co-workersPugh, Wilkinson and others have established the stable ergodicity of awide range of partially hyperbolic dynamical systems which preserve asmooth volume element, thus establishing the statistical robustness ofthese chaotic systems. The thrust of the work proposed is to extendthese results to include almost all partially hyperbolic systems and toeliminate the hypothesis of volume preservation. This is an ambitious goal,but the results obtained included the development of new tools, namelyjulienne quasi-conformality and julienne density point preservation of thestable holonomy maps, whose power has not been fully explored. A second theme is a study of the complexity of continuous problems centered around theanalysis and application of variants of Newton's method.Chaotic dynamical systems are pervasive in scientific, engineering andnumerical simulation applications. The proposed work would lay foundationsfor the statistical analysis of these systems, whose deterministic behavior isunpredictable due to the presence of sensitive dependence on initialconditions. Newton's method for solving systems of equations is one ofthe main algorithms of numerical analysis. A better understanding of itsproperties and those of variants can make the solution of problems ofscientific and engineering origin more efficient.
摘要:首席调查员是迈克尔·舒布。Shub和他的同事Pugh,Wilkinson等人建立了保持光滑体积元的大范围部分双曲动力系统的稳定遍历性,从而建立了这些混沌系统的统计稳健性。提出的工作的主旨是将这些结果推广到几乎所有的部分双曲型系统,并消除体积保持的假设。这是一个雄心勃勃的目标,但所取得的成果包括开发新的工具,即稳定完整映射的julienne拟一致和julienne密度点保持,其功能尚未得到充分探索。第二个主题是围绕牛顿方法变体的分析和应用来研究连续问题的复杂性。混沌动力系统在科学、工程和数值模拟应用中普遍存在。所提出的工作将为这些系统的统计分析奠定基础,由于存在对初始条件的敏感依赖,这些系统的确定性行为是不可预测的。求解方程组的牛顿方法是数值分析的主要算法之一。更好地了解它的性质和变种的性质可以使解决科学和工程起源的问题更有效率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Shub其他文献
A Note on the Finite Variance of the Averaging Function for Polynomial System Solving
- DOI:
10.1007/s10208-009-9054-4 - 发表时间:
2009-10-03 - 期刊:
- 影响因子:2.700
- 作者:
Carlos Beltrán;Michael Shub - 通讯作者:
Michael Shub
Axiom A actions
- DOI:
10.1007/bf01405171 - 发表时间:
1975-02-01 - 期刊:
- 影响因子:3.600
- 作者:
Charles Pugh;Michael Shub - 通讯作者:
Michael Shub
Erratum to: Smale’s Fundamental Theorem of Algebra Reconsidered
- DOI:
10.1007/s10208-014-9211-2 - 发表时间:
2014-06-14 - 期刊:
- 影响因子:2.700
- 作者:
Diego Armentano;Michael Shub - 通讯作者:
Michael Shub
Mysteries of mathematics and computation
- DOI:
10.1007/bf03026609 - 发表时间:
2009-01-16 - 期刊:
- 影响因子:0.400
- 作者:
Michael Shub - 通讯作者:
Michael Shub
Cusp Bifurcation in Metastatic Breast Cancer Cells
转移性乳腺癌细胞的尖点分叉
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Brenda Delamonica;Gábor Balázsi;Michael Shub - 通讯作者:
Michael Shub
Michael Shub的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Shub', 18)}}的其他基金
Mathematical Sciences: Continuous Complexity and Dynamical Systems
数学科学:连续复杂性和动态系统
- 批准号:
9616920 - 财政年份:1997
- 资助金额:
$ 5.94万 - 项目类别:
Standard Grant
Mathematical Sciences: Continuous Complexity and Dynamics
数学科学:连续复杂性和动力学
- 批准号:
9303372 - 财政年份:1993
- 资助金额:
$ 5.94万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Systems and Complexity
数学科学:动力系统和复杂性
- 批准号:
8900443 - 财政年份:1989
- 资助金额:
$ 5.94万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamical Systems, Geometry, Complexity and Topology
数学科学:动力系统、几何、复杂性和拓扑
- 批准号:
8601550 - 财政年份:1986
- 资助金额:
$ 5.94万 - 项目类别:
Continuing Grant
Dynamical Systems and Differential Geometry
动力系统和微分几何
- 批准号:
8313076 - 财政年份:1984
- 资助金额:
$ 5.94万 - 项目类别:
Standard Grant
Dynamical Systems and Topology (Mathematical Sciences)
动力系统和拓扑(数学科学)
- 批准号:
8201267 - 财政年份:1982
- 资助金额:
$ 5.94万 - 项目类别:
Continuing Grant
相似海外基金
eMB: Mathematical Classification of Complexity in Population Dynamics
eMB:人口动态复杂性的数学分类
- 批准号:
2325146 - 财政年份:2023
- 资助金额:
$ 5.94万 - 项目类别:
Standard Grant
Concentrated Optimization for Machine Learning: Complexity in High-Dimensions, Average-case Analysis, and Exact Dynamics
机器学习的集中优化:高维复杂性、平均情况分析和精确动态
- 批准号:
DGECR-2022-00389 - 财政年份:2022
- 资助金额:
$ 5.94万 - 项目类别:
Discovery Launch Supplement
Developing fisheries models of intermediate complexity to address spatial dynamics and species interactions
开发中等复杂度的渔业模型以解决空间动态和物种相互作用
- 批准号:
RGPIN-2019-04045 - 财政年份:2022
- 资助金额:
$ 5.94万 - 项目类别:
Discovery Grants Program - Individual
Concentrated Optimization for Machine Learning: Complexity in High-Dimensions, Average-case Analysis, and Exact Dynamics
机器学习的集中优化:高维复杂性、平均情况分析和精确动态
- 批准号:
RGPIN-2022-04034 - 财政年份:2022
- 资助金额:
$ 5.94万 - 项目类别:
Discovery Grants Program - Individual
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
- 批准号:
RGPIN-2018-04426 - 财政年份:2022
- 资助金额:
$ 5.94万 - 项目类别:
Discovery Grants Program - Individual
Further Studies of Dynamics for El Nino-Southern Oscillation (ENSO) Diversity and Complexity
厄尔尼诺-南方涛动(ENSO)动力学多样性和复杂性的进一步研究
- 批准号:
2219257 - 财政年份:2022
- 资助金额:
$ 5.94万 - 项目类别:
Standard Grant
Low-complexity domain protein molecular structure, conformational dynamics, and inter-protein interactions in human health and disease
人类健康和疾病中的低复杂性域蛋白质分子结构、构象动力学和蛋白质间相互作用
- 批准号:
10488197 - 财政年份:2021
- 资助金额:
$ 5.94万 - 项目类别:
Low-complexity domain protein molecular structure, conformational dynamics, and inter-protein interactions in human health and disease
人类健康和疾病中的低复杂性域蛋白质分子结构、构象动力学和蛋白质间相互作用
- 批准号:
10649623 - 财政年份:2021
- 资助金额:
$ 5.94万 - 项目类别:
Developing fisheries models of intermediate complexity to address spatial dynamics and species interactions
开发中等复杂度的渔业模型以解决空间动态和物种相互作用
- 批准号:
RGPIN-2019-04045 - 财政年份:2021
- 资助金额:
$ 5.94万 - 项目类别:
Discovery Grants Program - Individual
Low-complexity domain protein molecular structure, conformational dynamics, and inter-protein interactions in human health and disease
人类健康和疾病中的低复杂性域蛋白质分子结构、构象动力学和蛋白质间相互作用
- 批准号:
10275947 - 财政年份:2021
- 资助金额:
$ 5.94万 - 项目类别: