Mathematical Sciences: Mathematical Modeling of Island Formation in Strained Semiconductor Films

数学科学:应变半导体薄膜中岛形成的数学模型

基本信息

  • 批准号:
    9622930
  • 负责人:
  • 金额:
    $ 7.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-06-01 至 2000-05-31
  • 项目状态:
    已结题

项目摘要

9622930 Spencer The objective of this research is to develop mathematical models to predict and control morphology development in strained solid films, which are of great technological importance in semiconductor device applications. The research project focuses on the consequences of the stress-driven morphological instability which occurs during film growth. In particular, the formation of the "island" morphology will be explained in terms of mathematical models for the morphological instability. The research program consists of two projects, one focusing on single-component films, the second focusing on alloy films. In the first project, a "state of the art" model for the formation of three-dimensional islands will be developed. This model will include a crucial treatment of the wetting layer between the film and its underlying substrate. In the second project, a basic model will be developed for the more complicated problem of morphology development in alloy films, where composition variations and stress variations are coupled. In both projects the mathematical models are nonlinear free boundary problems for the shape of the film. These problems will be analyzed using applied mathematical techniques which include analytical, asymptotic, and numerical methods. In particular, an asymptotic description for the island shape will be derived which takes advantage of the fact that islands generally have a much smaller height than width. The results of the work will be compared to observations of islands in strained film systems from both collaborative research projects and published experimental results. The models will be evaluated to determine the extent to which they can be used to predict and control morphologies, as well as to determine future directions for improving mathematical models of strained film growth as part of a long-term research program. %%% The objective of this research is to develop mathematical models to predict and control mo rphology development in strained solid films. Strained solid films are of great technological importance in semiconductor device applications. The strained films are grown from a vapor through the deposition of the solid film onto an underlying substrate of a different material. Because of the bonding of the film to the substrate, the film is grown in a state of stress. During the growth of these films, the stresses in the film can lead to the formation of bumps, or "islands." The presence of these islands has a crucial effect on the electronic properties of the thin film device, so a knowledge of what controls island formation enables a better control over the electronic properties of the strained film device. The objective of this research is to describe island formation from physically-derived mathematical models of the film growth process. This mathematical model represents a complementary alternative to traditional experiment-based research on strained films. The primary benefit of developing such a model is that it allows one to quickly and easily determine how the growth of the film is affected by the different material parameters and process parameters. Thus, the model has three main applications in the development and production of strained solid films. Firstly, by changing the parameters in the model, the model can be used as a low-cost way to "experiment" with different materials and growth configurations. Secondly, the mathematical model can be used to help engineer materials by determining the necessary process inputs required to achieve a strained solid film with specified physical and electronic properties. Finally, the mathematical model can assist in the determination of optimum and/or acceptable processing conditions for the manufacture of strained films in industry. ***
9622930 Spencer 这项研究的目的是开发数学模型来预测和控制应变固体薄膜的形态发展,这在半导体器件应用中具有重要的技术重要性。 该研究项目的重点是薄膜生长过程中发生的应力驱动的形态不稳定的后果。 特别是,“岛”形态的形成将用形态不稳定性的数学模型来解释。 该研究计划由两个项目组成,一个重点关注单组分薄膜,第二个重点关注合金薄膜。 在第一个项目中,将开发用于形成三维岛屿的“最先进”模型。 该模型将包括对薄膜与其底层基材之间的润湿层进行关键处理。 在第二个项目中,将为合金膜中更复杂的形态发展问题开发一个基本模型,其中成分变化和应力变化是耦合的。 在这两个项目中,数学模型都是薄膜形状的非线性自由边界问题。 这些问题将使用应用数学技术进行分析,包括解析法、渐近法和数值方法。 特别是,将导出岛形状的渐近描述,该描述利用岛通常具有比宽度小得多的事实。 这项工作的结果将与合作研究项目和已发表的实验结果对应变薄膜系统中岛屿的观察结果进行比较。 将评估这些模型,以确定它们可在多大程度上用于预测和控制形态,并确定作为长期研究计划的一部分改进应变薄膜生长数学模型的未来方向。 %%% 这项研究的目的是开发数学模型来预测和控制应变固体薄膜的形态发展。 应变固体薄膜在半导体器件应用中具有重要的技术重要性。 通过将固体膜沉积到不同材料的底层基板上,应变膜从蒸气中生长出来。 由于薄膜与衬底的结合,薄膜在应力状态下生长。 在这些薄膜的生长过程中,薄膜中的应力可能导致形成凸块或“岛”。 这些岛的存在对薄膜器件的电子特性具有至关重要的影响,因此了解控制岛形成的因素可以更好地控制应变薄膜器件的电子特性。 这项研究的目的是根据薄膜生长过程的物理推导数学模型来描述岛的形成。 该数学模型代表了传统基于实验的应变薄膜研究的补充替代方案。 开发这种模型的主要好处是,它允许人们快速、轻松地确定不同材料参数和工艺参数如何影响薄膜的生长。 因此,该模型在应变固体薄膜的开发和生产中具有三个主要应用。 首先,通过改变模型中的参数,该模型可以作为一种低成本的方式来“实验”不同的材料和生长配置。 其次,数学模型可用于通过确定获得具有指定物理和电子特性的应变固体薄膜所需的必要工艺输入来帮助设计材料。 最后,数学模型可以帮助确定工业中应变薄膜制造的最佳和/或可接受的加工条件。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Spencer其他文献

HSV-1 vector-delivered FGF2 to the retina is neuroprotective but does not preserve functional responses.
HSV-1 载体将 FGF2 递送至视网膜具有神经保护作用,但不能保留功能反应。
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    12.4
  • 作者:
    Brian Spencer;Seema Agarwala;Laura Gentry;Curtis R. Brandt
  • 通讯作者:
    Curtis R. Brandt
Increased Calcium Influx and Decreased Buffering Capacity of Intracellular Stores Underlie Neuropathology Induced by Over-Expression of α-Synuclein
  • DOI:
    10.1016/j.bpj.2011.11.2321
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Lidia Reznichenko;Qun Cheng;Kristal Nizar;Sergey L. Gratiy;Payam A. Saisan;Edward M. Rockenstein;Tanya González;Cristina Patrick;Brian Spencer;Paula Desplats;Anders M. Dale;Anna Devor;Eliezer Masliah
  • 通讯作者:
    Eliezer Masliah
Correction: Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models
  • DOI:
    10.1186/s13287-024-03702-7
  • 发表时间:
    2024-03-25
  • 期刊:
  • 影响因子:
    7.300
  • 作者:
    Mathew Blurton-Jones;Brian Spencer;Sara Michael;Nicholas A. Castello;Andranik A. Agazaryan;Joy L. Davis;Franz-Josef Müller;Jeanne F. Loring;Eliezer Masliah;Frank M. LaFerla
  • 通讯作者:
    Frank M. LaFerla
TRANSTHYRETIN AMYLOID CARDIOMYOPATHY IS ASSOCIATED WITH WORSE OUTCOMES WHEN COMPARED TO PATIENTS WITH NON-AMYLOID RELATED HEART FAILURE OF SIMILAR RACE AND ETHNICITY: THE SCAN-MP STUDY
  • DOI:
    10.1016/s0735-1097(24)02510-5
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Alexander Schmidt;Ikram Ullah;Sergio Luis Teruya;Denise M. Fine;Natalia Sabogal;Rachel Foster;Stephen Helmke;Carlos Rodriguez;Brian Spencer;Morgan L. Winburn;Dimitrios Bampatsias;Abdirahman Wardhere;Cinthia De Freitas;Tatiana Prokaeva;Cesia Maria Gallegos Kattan;Edward James Miller;Michael Paul LaValley;Mathew S. Maurer;Frederick L. Ruberg
  • 通讯作者:
    Frederick L. Ruberg
An unusual phenotype of hereditary AApoAI amyloidosis caused by a novel Asp20Tyr substitution is linked to pH-dependent aggregation of apolipoprotein A-I
一种由新型Asp20Tyr替换导致的遗传性载脂蛋白A - I淀粉样变性的异常表型与载脂蛋白A - I的pH依赖性聚集有关
  • DOI:
    10.1016/j.bbadis.2025.167820
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Tatiana Prokaeva;Shobini Jayaraman;Elena Klimtchuk;Natasha Burke;Brian Spencer;Dobrin Nedelkov;Hui Chen;Surendra Dasari;Ellen D. McPhail;Lucas Pereira;Michael C. Payne;Sherry Wong;Eric J. Burks;Vaishali Sanchorawala;Olga Gursky
  • 通讯作者:
    Olga Gursky

Brian Spencer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Spencer', 18)}}的其他基金

Corner regularizations for nanoscale crystal growth
纳米级晶体生长的角正则化
  • 批准号:
    0505497
  • 财政年份:
    2005
  • 资助金额:
    $ 7.84万
  • 项目类别:
    Standard Grant
Morphological Development in Strained Alloy Films
应变合金薄膜的形态发展
  • 批准号:
    0072532
  • 财政年份:
    2000
  • 资助金额:
    $ 7.84万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9206196
  • 财政年份:
    1992
  • 资助金额:
    $ 7.84万
  • 项目类别:
    Fellowship Award

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

REU Site: Mathematical Modeling in the Sciences
REU 网站:科学中的数学建模
  • 批准号:
    1950677
  • 财政年份:
    2020
  • 资助金额:
    $ 7.84万
  • 项目类别:
    Standard Grant
QoS Modeling Technology for Wireless LAN based on Mathematical Sciences
基于数学科学的无线局域网QoS建模技术
  • 批准号:
    19K11944
  • 财政年份:
    2019
  • 资助金额:
    $ 7.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New modeling and mathematical analysis for pattern formations in life sciences
生命科学中模式形成的新建模和数学分析
  • 批准号:
    18H01139
  • 财政年份:
    2018
  • 资助金额:
    $ 7.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
REU Site: Mathematical Modeling in Environmental, Biological and Other Sciences
REU 网站:环境、生物和其他科学中的数学建模
  • 批准号:
    1755561
  • 财政年份:
    2018
  • 资助金额:
    $ 7.84万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Shared Memory High Performance Computer for Modeling and Data Analysis in the Mathematical and Physical Sciences
MRI:获取共享内存高性能计算机,用于数学和物理科学中的建模和数据分析
  • 批准号:
    1040196
  • 财政年份:
    2011
  • 资助金额:
    $ 7.84万
  • 项目类别:
    Standard Grant
The 24th Shanks Conference and Lecture: Mathematical Modeling in the Medical Sciences in conjunction with the ACSMSBB; Spring 2009, Nashville, TN
第 24 届 Shanks 会议和讲座:与 ACSMSBB 联合举办的医学科学中的数学建模;
  • 批准号:
    0903455
  • 财政年份:
    2009
  • 资助金额:
    $ 7.84万
  • 项目类别:
    Standard Grant
Pacific Northwest Conference on Comprehensive Mathematical Modeling in the Natural and Engineering Sciences Organized in the Spirit of L.A. Segel, Pullman, WA, July 26-29, 2008
太平洋西北自然科学和工程科学综合数学建模会议本着 L.A. Segel 的精神于 2008 年 7 月 26-29 日在华盛顿州普尔曼举行
  • 批准号:
    0751308
  • 财政年份:
    2008
  • 资助金额:
    $ 7.84万
  • 项目类别:
    Standard Grant
Teaching Mathematical Modeling in the Behavioral Sciences
行为科学中的数学建模教学
  • 批准号:
    0716592
  • 财政年份:
    2007
  • 资助金额:
    $ 7.84万
  • 项目类别:
    Standard Grant
Behavioral Sciences Curriculum Enhanced with Mathematical Modeling
通过数学建模增强行为科学课程
  • 批准号:
    0341410
  • 财政年份:
    2004
  • 资助金额:
    $ 7.84万
  • 项目类别:
    Standard Grant
Interdisciplinary Grants in the Mathematical Sciences: Modeling Microbial Populations, Biofilms and Competition Dynamics in a General Gradostat
数学科学的跨学科资助:在通用 Gradostat 中模拟微生物种群、生物膜和竞争动态
  • 批准号:
    0107439
  • 财政年份:
    2001
  • 资助金额:
    $ 7.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了