Mathematical Sciences: Linear and Nonlinear Rigidity of Discrete Subgroups Lie Groups and Manifolds of Negative Curvature
数学科学:离散子群李群和负曲率流形的线性和非线性刚性
基本信息
- 批准号:9626621
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-01 至 1998-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Yue The author is currently working on various aspects of the geometry and rigidity of negatively curved manifolds and symmetric spaces using methods from dynamical systems, Lie groups, several complex variable, quasiconformal mapping, algebraic geometry: 1) Extensions of Mostow rigidity to general discrete subgroups of infinite covolume. The author has achieved several key results but still there are important open problems to be solved and it seems that one has to combine techniques from ergodic theory, algebraic geometry, complex geometry and Heisenberg geometry for further approach. 2) Nonlinear extensions of Mostow rigidity--the rigidity of smooth actions of lattices in noncompact semisimple Lie groups. In particular, the author will further study the obstructions to the existence of an invariant conformal or projective or affine structure under a smooth group action and to combine the theory of differential invariants with Zimmer's cocycle superrigidity. 3)Geometry and Dynamics around negatively curved manifolds. The author has obtained a number of results concerning negatively curved manifolds by using techniques from ergodic theory, global analysis. There are several deep and difficult open problems(for example, the Katok entropy conjecture, the marked length spectrum problem). The potential of the dynamical and global approach deserves to be further explored. 4)Hyperbolization of negatively curved 3-maifolds. Kleinian groups. The author proved recently that a negatively curved closed manifold is either hyperbolic or the geodesic flow preserves a measurable proper invariant distribution by considering quasiconformality in the geodesic flow. This seems to be a first nontrivial step towards another approach to the hyperbolization of negatively curved closed three-manifolds(which is a big open problem in Thurston's program). The author is also interested in the Ahlfors area conjecture. The author's mathematical research are centered around the rigidity and flexibilit y of negatively curved spaces. From a generic point of view, most spaces are negatively curved. The intrinsic property of spaces are closely related to the dynamics of its geodesic flow. Therefore to understand these spaces(including the one we are living in)--their size, shape, and evolution, it is inevitable to study the stability, the rigidity and flexibility of various dynamical systems(i.e. group actions) on them.
本文主要研究负弯曲流形和对称空间的几何和刚性问题,主要包括:1)将Mostow刚性推广到无限协体积的一般离散子群。作者已经取得了一些重要的成果,但仍有一些重要的开放性问题有待解决,似乎必须结合遍历理论、代数几何、复几何和海森堡几何的技术来进一步研究。2) Mostow刚性的非线性扩展——非紧半单李群中格的光滑作用的刚性。特别地,作者将进一步研究在光滑群作用下存在不变共形、射影或仿射结构的障碍,并将微分不变量理论与Zimmer的循环超刚性结合起来。3)负弯曲流形周围的几何和动力学。作者运用遍历理论、全局分析等方法,得到了一些关于负弯曲流形的结果。有几个深刻而困难的开放问题(例如,Katok熵猜想,标记长度谱问题)。动态和全球方法的潜力值得进一步探索。负弯曲3-maifold的夸张化。克莱因理论的组。作者最近通过考虑测地线流中的拟共形性,证明了负弯曲闭流形要么是双曲的,要么是测地线流保持了可测的固有不变分布。这似乎是对负弯曲闭三流形(Thurston的方案中一个大的开放问题)的夸张化的另一种方法迈出的重要的第一步。作者对阿尔福斯面积猜想也很感兴趣。作者的数学研究主要围绕负弯曲空间的刚性和柔性展开。从一般的角度来看,大多数空间都是负弯曲的。空间的内在性质与其测地线流动的动力学密切相关。因此,为了理解这些空间(包括我们生活的空间)——它们的大小、形状和演变,就不可避免地要研究各种动力系统的稳定性、刚性和灵活性。对他们采取集体行动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chengbo Yue其他文献
Foliations with leaves of nonpositive curvature
- DOI:
10.1007/bf02774030 - 发表时间:
1997-12-01 - 期刊:
- 影响因子:0.800
- 作者:
Chengbo Yue - 通讯作者:
Chengbo Yue
Quasiconformality in the geodesic flow of negatively curved manifolds
- DOI:
10.1007/bf02247120 - 发表时间:
1996-07-01 - 期刊:
- 影响因子:2.500
- 作者:
Chengbo Yue - 通讯作者:
Chengbo Yue
Chengbo Yue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chengbo Yue', 18)}}的其他基金
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627510 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Fellowship Award
Mathematical Sciences: Rigidity and Dynamics of Manifolds of Negative Curvature
数学科学:负曲率流形的刚性和动力学
- 批准号:
9403870 - 财政年份:1994
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences -Generalized Linear Mixed Models and Related Topics - June 8-12,1999
NSF/CBMS 数学科学区域会议 - 广义线性混合模型及相关主题 - 1999 年 6 月 8 日至 12 日
- 批准号:
9813374 - 财政年份:1999
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Research Experiences in Parallel Numerical Linear Algebra
数学科学:并行数值线性代数的研究经验
- 批准号:
9896361 - 财政年份:1998
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Nevanlinna Counting Function, Linear-Fractional Models, and Orbits of Operators
数学科学:Nevanlinna 计数函数、线性分数模型和算子轨道
- 批准号:
9706614 - 财政年份:1997
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research Experiences in Parallel Numerical Linear Algebra
数学科学:并行数值线性代数的研究经验
- 批准号:
9619836 - 财政年份:1997
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Large-eddy Simulation & Mathematical Analysis of Non-equilibrium & Non-linear Processes in Mantle Convection
数学科学:大涡模拟
- 批准号:
9622889 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Estimation in Generalized Linear Mixed Models
数学科学:广义线性混合模型中的估计
- 批准号:
9625476 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Linear, Classical, and Chevalley Groups Over Rings
数学科学:环上的线性群、经典群和谢瓦利群
- 批准号:
9622899 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Topological Embeddings in Piecewise Linear Manifolds
数学科学:RUI:分段线性流形中的拓扑嵌入
- 批准号:
9626221 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Binary Linear Codes: Nonexistence and Classification Theorems
数学科学:二进制线性代码:不存在性和分类定理
- 批准号:
9623205 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Linear and Nonlinear Partial Differential Equations
数学科学:线性和非线性偏微分方程问题
- 批准号:
9623174 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant














{{item.name}}会员




