Degenerate Quantum Numbers in Silicon Germanium Heterostructures
硅锗异质结构中的简并量子数
基本信息
- 批准号:9631709
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-01 至 1998-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
w:\awards\awards96\*.doc 9631709 Murphy This Research Planning Grant will provide support for research to investigate the possibility of using the newly developed high mobility Si/SiGe heterostructures (by others) to study skyrmions. These skyrmions are topological many-body excitations in a two dimensional electron system (2DES) and have at present been observed in high mobility GaAs material. The Si/SiGe material has potential for integrated circuit use and this planning grant will attempt to control the valley splitting in Si/SiGe and tune it to near zero in order to enhance the prospects to observe skyrmions. Demonstration of tunability is the primary goal. %%% A predicted new type of electron excitation in a planar electron system (two-dimensional) called skyrmions has been observed in gallium arsenide material that can be made with high electron mobility. This high electron mobility has recently been produced in a silicon/silicon-germanium multilayer structure and this Research Planning Grant will support the investigation of this new material in which skyrmions can be identified. Since the silicon/silicon-germanium material has potential for commercial use in the electronics industry the understanding of the behavior of the excitations that affect the electron transport is of considerable interest. ***
w:\awards\awards96\*.doc 9631709 Murphy 这项研究规划补助金将为研究提供支持,以调查使用新开发的高机动性的可能性。 Si/SiGe 异质结构(其他) 到 研究Skyrmions。 这些skyrmions是拓扑多体激发的二维电子系统(2DES),目前已被观察到在高迁移率GaAs材料。 硅/硅锗材料具有集成电路使用的潜力,这项计划拨款将试图控制硅/硅锗中的谷分裂,并将其调整到接近零,以提高观察skyrmions的前景。 演示可调性是主要目标。 在砷化镓材料中观察到了一种被称为skyrmions的平面电子系统(二维)中预测的新型电子激发,这种材料可以制成高电子迁移率。这种高电子迁移率最近已在硅/硅锗多层结构中产生,这项研究计划资助将支持对这种新材料的研究,其中可以识别skyrmions。 由于硅/硅锗材料在电子工业中具有商业用途的潜力,因此对影响电子传输的激发行为的理解具有相当大的兴趣。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheena Murphy其他文献
Sheena Murphy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheena Murphy', 18)}}的其他基金
ADVANCE Partnerships for Adaptation, Implementation, and Dissemination Award: Promoting Institutional Change at the University of Oklahoma and within the Big XII Conference
ADVANCE 适应、实施和传播伙伴关系奖:促进俄克拉荷马大学和 Big XII 会议的制度变革
- 批准号:
0620102 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
ADVANCE Leadership Award: Collaborative Proposal - FORWARD to Professorship
ADVANCE 领导奖:合作提案 - 晋升为教授
- 批准号:
0540801 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
CAREER: Topological Excitations in Two Dimensional Systems
职业:二维系统中的拓扑激发
- 批准号:
9733949 - 财政年份:1998
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
Acquisition of Processing Equipment for Advanced Materials Research
购置先进材料研究加工设备
- 批准号:
9803113 - 财政年份:1998
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Undergraduate Summer Research in Physics and Astronomy: An REU Site at the University of Oklahoma
物理和天文学本科生暑期研究:俄克拉荷马大学 REU 站点
- 批准号:
9531530 - 财政年份:1996
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Determination of topological quantum numbers and search for novel electronic phases in Kitaev quantum spin liquid materials
确定基塔耶夫量子自旋液体材料中的拓扑量子数并寻找新型电子相
- 批准号:
21H01793 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel topological numbers associated with entangled quantum states
与纠缠量子态相关的新颖拓扑数
- 批准号:
17K05563 - 财政年份:2017
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scaling limits of the electronic Schrödinger equation fordiatomic molecules: Asymptotic prediction of correlation structure,potential energy curves, and symmetry quantum numbers
双原子分子电子薛定谔方程的标度极限:相关结构、势能曲线和对称量子数的渐近预测
- 批准号:
234732874 - 财政年份:2013
- 资助金额:
$ 2.3万 - 项目类别:
Research Grants
Open problems in geometry of numbers, and the geometry of quantum phases
数几何和量子相几何中的未决问题
- 批准号:
5355-2007 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual
Open problems in geometry of numbers, and the geometry of quantum phases
数几何和量子相几何中的未决问题
- 批准号:
5355-2007 - 财政年份:2010
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual
Open problems in geometry of numbers, and the geometry of quantum phases
数几何和量子相几何中的未决问题
- 批准号:
5355-2007 - 财政年份:2009
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual
Open problems in geometry of numbers, and the geometry of quantum phases
数几何和量子相几何中的未决问题
- 批准号:
5355-2007 - 财政年份:2008
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual
Open problems in geometry of numbers, and the geometry of quantum phases
数几何和量子相几何中的未决问题
- 批准号:
5355-2007 - 财政年份:2007
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual
Method of computing Hall conductivities on discrete Brillouin zone-topological quantum numbers on lattices-
计算离散布里渊区霍尔电导率的方法-晶格上的拓扑量子数-
- 批准号:
18540365 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)