Kloosterman Sums and Related Exponential Sums
Kloosterman 和及相关指数和
基本信息
- 批准号:9701225
- 负责人:
- 金额:$ 5.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ye 9701225 This award funds research of Professor Ye, who works on Kloosterman sums. The classical Kloosterman sum has important applications in number theory. An example is Kuznetsov's estimate of a weighted sum of Kloosterman sums which is a step toward the Linnik--Selberg conjecture; the proof is based on the Kuznetsov trace formula. Generalized Kloosterman sums appear in various relative trace formulas; such a relative trace formula is indeed an equality between a generalized Kuznetsov trace formula and one of its relative versions. The above appearances of the Kloosterman sums suggest their central role in number theory and group representation theory. This research project is centered at Kloosterman sums and related exponential sums, their generalizations, and their applications. The objectives are listed below. (i) The Langlands functoriality conjecture predicts functorial relationships between representations of different groups. If a functorial lifting can be studied by a relative trace formula, its fundamental lemma may be reduced to an identity of exponential sums of the Kloosterman type. The first objective is to study specific lifting problems and deduce the corresponding identities of exponential sums. (ii) Conversely, such an identity not only will imply the fundamental lemma of the relative trace formula, but also might be used to deduce the whole relative trace formula, based on recent results on Shalika germ expansions and exponential sum expansions of local orbital integrals of relative trace formulas. The second objective is to deduce a relative trace formula from its identity of exponential sums. (iii) Important applications of the classical Kloosterman sum are usually based on estimation of its values and weighted sums. The last objective is to estimate certain weighted sums of generalized Kloosterman sums and related high ranking exponential sums. This proposal is in the part of mathematics known as the Langlands program. This program represents a fus ion of Number Theory and Representation Theory , and it has been a stimulus to a great deal of recent research in both fields. Number Theory is one of the oldest branches of mathematics and is concerned with the most basic of mathematical objects, the ordinary whole numbers. However, it turns out that in order to express many of the patterns and relations discovered by mathematicians, it is necessary to use some of the most advanced and technical theories of twentieth century mathematics. On the other hand, the problems of number theory have provided a powerful stimulus to research in other diverse parts of the discipline. The Langland's program provides a framework for investigating and vastly generalizing the so-called reciprocity laws of number theory using the tools of infinite-dimensional representation theory. Although very technical and deep, this program has found astonishing applications in areas like theoretical computer science (construction of expanding graphs) and coding theory (finding optimal Goppa codes). It has also played a role in some of the recent spectacular developments in number theory itself, such as the proof of Fermat's Last Theorem.
掖9701225 该奖项资助叶教授的研究,他从事Kloosterman求和。经典的Kloosterman和在数论中有重要的应用。一个例子是库兹涅佐夫的估计加权总和Kloosterman和这是一个步骤的林尼克-塞尔伯格猜想;证明是根据库兹涅佐夫迹公式。广义Kloosterman和出现在各种相对迹公式中;这样的相对迹公式确实是广义Kuznetsov迹公式与其相对版本之一之间的等式。Kloosterman和的上述出现表明它们在数论和群表示论中的核心作用。这个研究项目的中心是Kloosterman和相关的指数和,他们的推广,以及他们的应用。目标如下。 (i)朗兰兹函数性猜想预测了不同群的表示之间的函数关系。如果函子提升可以用一个相对迹公式来研究,那么它的基本引理可以化为Kloosterman型指数和的恒等式。第一个目标是研究特定的提升问题,并推导出相应的指数和恒等式。 (ii)相反,这样的恒等式不仅隐含了相对迹公式的基本引理,而且可以根据相对迹公式的局部轨道积分的Shalika芽展开式和指数和展开式的最新结果,推导出整个相对迹公式.第二个目的是由指数和的恒等式导出一个相对迹公式。 (iii)经典Kloosterman和的重要应用通常基于对其值和加权和的估计。最后一个目标是估计广义Kloosterman和及相关高阶指数和的某些加权和。 这个建议是在数学的一部分被称为朗兰兹纲领。这个程序代表了数论和表示论的融合,并且它已经刺激了这两个领域的大量最新研究。数论是数学中最古老的分支之一,涉及最基本的数学对象,即普通的整数。 然而,事实证明,为了表达数学家发现的许多模式和关系,必须使用二十世纪数学的一些最先进和技术性的理论。另一方面,数论的问题为该学科其他不同部分的研究提供了强有力的刺激。 朗格兰的程序提供了一个框架,用于使用无限维表示论的工具来研究和广泛推广数论的所谓互易定律。 虽然非常技术性和深度,这个程序已经在理论计算机科学(构建扩展图)和编码理论(寻找最佳Goppa码)等领域找到了惊人的应用。 它也在数论本身最近的一些引人注目的发展中发挥了作用,例如费马大定理的证明。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yangbo Ye其他文献
Weighted stationary phase with high orders
高阶加权固定相
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Mark McKee;Haiwei Sun;Yangbo Ye - 通讯作者:
Yangbo Ye
improved subconvexity bounds for GL(2)timesGL(3) and GL(3) L-functions by weighted stationary phase
通过加权固定相改进 GL(2)timesGL(3) 和 GL(3) L 函数的次凸界
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.3
- 作者:
Mark McKee;Haiwei Sun;Yangbo Ye - 通讯作者:
Yangbo Ye
Sums of Fourier coefficients of a Maass form for SL(3, Z) twisted by exponential functions
由指数函数扭曲的 SL(3, Z) 的 Maass 形式的傅里叶系数之和
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Xiumin Ren;Yangbo Ye - 通讯作者:
Yangbo Ye
Attribution of a record-breaking cold event in the historically warmest year of 2023 and assessing future risks
2023 年这一历史上最温暖的年份中破纪录的寒冷事件的归因及未来风险评估
- DOI:
10.1038/s41612-024-00886-w - 发表时间:
2025-01-13 - 期刊:
- 影响因子:8.400
- 作者:
Yangbo Ye;Cheng Qian;Aiguo Dai;Yuting Zhang;Jiacheng Jiang;Xiaoye Zhang - 通讯作者:
Xiaoye Zhang
Yangbo Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Spatial restriction of exponential sums to thin sets and beyond
指数和对稀疏集及以上的空间限制
- 批准号:
2349828 - 财政年份:2024
- 资助金额:
$ 5.3万 - 项目类别:
Standard Grant
Ubiquity of Kloosterman sums in Number Theory and Beyond
克洛斯特曼求和在数论及其他领域中无处不在
- 批准号:
DP230100534 - 财政年份:2023
- 资助金额:
$ 5.3万 - 项目类别:
Discovery Projects
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
- 批准号:
EP/V055755/1 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Research Grant
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Discovery Grants Program - Individual
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振荡积分
- 批准号:
2200470 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Continuing Grant
LEAPS-MPS: Elliptic Dedekind Sums, Eisenstein Cocycles, and p-adic L-Functions
LEAPS-MPS:椭圆戴德金和、爱森斯坦余循环和 p 进 L 函数
- 批准号:
2212924 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Standard Grant
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Discovery Grants Program - Individual
New techniques for exponential sums over low degree polynomials
低次多项式指数和的新技术
- 批准号:
DE220100859 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Discovery Early Career Researcher Award
Anatomy and Physiology of Numbers -Statistics of Primes and Aliquot Sums-
数字的解剖学和生理学-素数和等分和的统计-
- 批准号:
21K13772 - 财政年份:2021
- 资助金额:
$ 5.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometrical and arithmetic study of invariants appearing exponential sums of representations
指数和表示的不变量的几何和算术研究
- 批准号:
21K13773 - 财政年份:2021
- 资助金额:
$ 5.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




