Nonlinear Mechanics for Energy Transfer in the Atmosphere and the Ocean
大气和海洋能量传输的非线性力学
基本信息
- 批准号:9701751
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Tabak 9701751 In this CAREER grant, the investigator pursues two lines of research on the nonlinear dynamics of the Atmosphere and the Ocean: one focused on turbulent cascades in dispersive systems, particularly the Munk-Garret scale distribution of energy in the Ocean, and the other focused on equatorial dynamics. Both projects study resonance among geophysical waves, in very different scales: the former considers energy transfer through the self-similar inertial range, from the long waves beyond which the system is forced, to the short waves below which dissipative mechanisms take over, and the latter concentrates on the very long waves, comparable to the radius of the Earth, where forcing plays an important role. In fact, the resonance between long equatorial waves could be considered as a starting point for the resonant energy transfer toward shorter waves. Once the scales become relatively small, detailed information on the nature of the forces is lost, and a statistically self-similar regime arises, further carrying the energy through a wide range of scales toward the very short waves. The educational component of this proposal involves developing a curriculum which blends applied mathematics and geophysical fluid dynamics. Particular efforts are devoted to integrate experimental and numerical work into both graduate and undergraduate education. This is facilitated by the building of a Laboratory for Fluid Dynamics at the Courant Institute, scheduled to open in the Spring of 1997. Two new graduate courses in the mathematical modeling of geophysical waves are developed, one introductory and the other more advanced, the latter focused on nonlinear mechanisms of energy transfer among geophysical waves. Numerical modeling and desk-top experimentation are integrated into advanced undergraduate mathematical courses, with the goal of introducing undergraduate students to the lure and potential of interdisciplinary work. The Ocean and Atmospheric Sciences have reached a degree of maturity such that the accurate prediction of the weather and even of longer term climatological changes appears to be within reach. A basic understanding of many of the fundamental processes underlying the prevailing winds and currents has been developed over the last few decades; and the computational power brought about by the computer revolution makes it possible to run global models with relatively fine grids. However, the dynamics of the weather and climate has a tremendous complexity, with phenomena taking place in a wide range of spatial and temporal scales. This complexity makes it hopeless to resolve all the relevant phenomena without appealing to strong simplifying assumptions. Applied Mathematics provides powerful tools that may help clarify the validity of the various assumptions and shed light on many phenomena not yet fully understood. The two proposed subjects of this research are examples of fields where this contribution should be particularly fruitful. The dynamics of equatorial waves is known to strongly affect the global weather and climate; phenomena such as the El Nino Southern Oscillation and its global effects exemplify this. In order to study phenomena of this kind, one needs to go beyond the time scale of the order of days of the waves, to the months or years where small effects accumulate to yield substantial changes in the amplitude and behavior of the waves. Asymptotic multiple-scale analysis is an ideal applied mathematical tool to achieve this. As for the other line of research, understanding the transfer of energy among scales in the Ocean and Atmosphere is fundamental to predict the long-time effects that a change in forcing, such as the one brought about by the release of chemicals in the Atmosphere and the Ocean, may produce on our weather. Involving students in these lines of research, and bringing research-related results and methods into their classroom education, also helps develop a generation of scientists better equipped to understand the difficult and important problems of atmosphere and ocean interactions.
在这项CAREER资助中,研究者对大气和海洋的非线性动力学进行了两方面的研究:一方面侧重于色散系统中的湍流级联,特别是海洋中munk - garrett尺度的能量分布,另一方面侧重于赤道动力学。这两个项目研究地球物理波之间的共振,在非常不同的尺度上:前者考虑通过自相似惯性范围的能量传递,从系统被强迫的长波到耗散机制起作用的短波,后者集中在与地球半径相当的非常长的波上,在那里强迫起着重要作用。事实上,长赤道波之间的共振可以看作是共振能量向短波传递的起点。一旦尺度变得相对较小,关于力的性质的详细信息就丢失了,并且出现了统计上的自相似状态,进一步将能量通过大范围的尺度向非常短的波传递。这一建议的教育部分包括开发一门融合了应用数学和地球物理流体动力学的课程。特别努力致力于将实验和数值工作整合到研究生和本科教育中。在科朗研究所建立了一个流体动力学实验室,计划于1997年春季开放,为这一工作提供了便利。开设了两门新的地球物理波数学建模研究生课程,一门是介绍性的,另一门更高级,后者侧重于地球物理波之间能量传递的非线性机制。数值模拟和桌面实验被整合到高等本科数学课程中,目的是向本科生介绍跨学科工作的吸引力和潜力。海洋和大气科学已达到一定程度的成熟,因此对天气甚至长期气候变化的准确预测似乎是触手可及的。在过去的几十年里,人们对盛行风和洋流背后的许多基本过程已经有了基本的了解;计算机革命带来的计算能力使运行具有相对精细网格的全球模型成为可能。然而,天气和气候的动态具有巨大的复杂性,现象发生在广泛的空间和时间尺度上。这种复杂性使得不借助强大的简化假设就无法解决所有相关现象。应用数学提供了强大的工具,可以帮助澄清各种假设的有效性,并阐明许多尚未完全理解的现象。本研究的两个拟议主题是这一贡献应该特别富有成果的领域的例子。众所周知,赤道波的动力对全球天气和气候有强烈的影响;厄尔尼诺、南方涛动等现象及其对全球的影响就是例证。为了研究这类现象,人们需要超越以天为单位的时间尺度,到几个月或几年,在这些时间尺度上,微小的影响累积起来,就会产生波的振幅和行为的实质性变化。渐近多尺度分析是实现这一目标的理想应用数学工具。至于另一项研究,了解海洋和大气中不同尺度之间的能量转移,对于预测作用力变化(例如大气和海洋中化学物质释放所带来的作用力变化)可能对我们的天气产生的长期影响至关重要。让学生参与这些研究,并将与研究相关的结果和方法带入课堂教育,也有助于培养一代科学家,使他们更好地理解大气和海洋相互作用的困难和重要问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Esteban Tabak其他文献
Standing shocks in a rotating channel
旋转通道中的站立冲击
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Tivon Jacobson;Esteban Tabak - 通讯作者:
Esteban Tabak
Esteban Tabak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Esteban Tabak', 18)}}的其他基金
Explanation of Variability through Optimal Transport
通过最佳传输解释可变性
- 批准号:
1715753 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Conservation law-based models for overturning circulations
基于守恒定律的翻转环流模型
- 批准号:
1211298 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Conservation Laws, Simple Waves and Mixing in Stratified Fluids
合作研究:守恒定律、简单波和分层流体中的混合
- 批准号:
0908252 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Stability, Wave Breaking and Mixing in Stratified Flows
合作研究:层流中的稳定性、破波和混合
- 批准号:
0604520 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CMG Collaborative Research: The Oceanic Internal Wave Energy Spectrum-Synthesis of Theory and Observations
CMG合作研究:海洋内波能量谱-理论与观测的综合
- 批准号:
0417732 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Nonlinear Wave Interactions & Singular Behavior
非线性波相互作用
- 批准号:
9501073 - 财政年份:1995
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
- 批准号:
10698836 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Mechanics and Design of Kirigami-Based Energy Dissipating Devices
基于剪纸的耗能装置的力学与设计
- 批准号:
EP/X040666/1 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Research Grant
CAREER: Electro-Chemo-Mechanics of Multiscale Active Materials for Next-Generation Energy Storage
职业:用于下一代储能的多尺度活性材料的电化学力学
- 批准号:
2237990 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
- 批准号:
NE/W009609/1 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Energy absorption and impact mechanics of origami structures and materials
折纸结构和材料的能量吸收和冲击力学
- 批准号:
DE220101094 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Early Career Researcher Award
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
- 批准号:
NE/W00948X/1 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
- 批准号:
NE/W009293/1 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
- 批准号:
NE/W009390/1 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
- 批准号:
NE/W009269/1 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Strong Energy Conservation in Quantum Statistical Mechanics
量子统计力学中的强能量守恒
- 批准号:
490063-2016 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Postgraduate Scholarships - Doctoral