Hydro-Mechanics of Fluid-Induced Seismicity in the Context of the Green-Energy Transition
绿色能源转型背景下流体诱发地震的流体力学
基本信息
- 批准号:NE/W009609/1
- 负责人:
- 金额:$ 112.83万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Green-energy transition technologies such as carbon storage, geothermal energy extraction, hydrogen storage, and compressed-air energy storage, all rely to some extent on subsurface injection or extraction of fluids. This process of injection and retrieval is well known to industry, as it has been performed all over the world, for decades.Fluid injection processes create mechanical disturbances in the subsurface, leading to local or regional displacements that may result in tremors. In the vast majority of cases, these tremors are imperceptible to humans, and have no effect on engineered structures. Nonetheless, in recent years, low magnitude induced seismic events have had profound consequences on the social acceptance of subsurface technologies, including the halting of natural gas production at the Groningen field in the Netherlands, halting of carbon storage experiments in Spain, halting of geothermal energy projects in Switzerland, and the moratorium on UK onshore gas extraction. In light of the seismic events of increasing severity recently measured during geothermal mining in Cornwall, the need to develop a rigorous fundamental understanding of induced seismicity is clear, significant, and timely, in order to prevent induced seismicity from jeopardising the ability to effectively develop the green energy transition.Most mathematical models that are used to predict and understand tremors rely on past observations of natural tremors and earthquakes. However, fluid-driven displacement in the subsurface is a controlled event, in which the properties of the injected fluids and the conditions of injection can be adjusted and optimised to avoid large events from happening. This project aims to develop a fundamental understanding of how the conditions of subsurface rocks, and the way in which fluid is injected in these rocks, affect the amount of seismicity that may be produced.We will analyse in detail the behaviour of fluid-driven seismic events, and will develop a physically realistic model based on computer simulations, novel laboratory experiments, and comprehensive field observations. Our model will characterise the relationships between specific subsurface properties, the nature of the fluid injection, and the severity of the seismic event. These findings will be linked to hazard analysis, to identify the conditions under which processes such as carbon storage, deep geothermal energy extraction, and compressed-air energy storage, are more or less likely to create tremors. We will also investigate how to best share our scientific findings with regulators and the general public, so as to maximise the impact of this work.This project will lead to an improved understanding of the processes and conditions that underpin the severity of induced seismic events, with a vision of developing strategies that will improve our ability to prevent and control these events. This project will also provide the scientific basis to improve precision and cost-effectiveness of scientific instruments that are used to monitor the subsurface, so that we can identify tremors as they occur, and better interpret what is causing them as we observe them.In the short term, we need to develop these models so that regulators and decision-makers can develop policies based on scientific evidence, using a variety of analysis tools that inter-validate each other, thereby ensuring that their predictions are robust. This is an important step in supporting the ability of developing a resilient, diversified, sustainable, and environmentally responsible energy security strategy for the UK.In the long term, by creating confidence in the understanding of these subsurface events, and demonstrating evidence of our ability to control them, we will lead the UK into an era where humans understand why certain seismic events have occurred, allowing them to potentially develop mechanisms to forecast their occurrence, and reduce their severity.
碳储存、地热能提取、氢储存和压缩空气储能等绿色能源转型技术都在一定程度上依赖于地下注入或提取流体。这种注入和回收的过程是工业界所熟知的,因为它已经在世界各地进行了几十年。流体注入过程在地下产生机械扰动,导致局部或区域位移,这可能导致震颤。在绝大多数情况下,这些震动是人类无法察觉的,对工程结构没有影响。尽管如此,近年来,低震级诱发的地震事件对地下技术的社会接受度产生了深远的影响,包括荷兰格罗宁根油田天然气生产的停止,西班牙碳储存实验的停止,瑞士地热能项目的停止,以及英国陆上天然气开采的暂停。鉴于最近在康沃尔地热开采期间测量到的日益严重的地震事件,对诱发地震活动性进行严格的基本了解的必要性是明确的、重要的和及时的,为了防止诱发的地震活动危及有效发展绿色能量转换的能力。大多数用于预测和理解地震的数学模型依赖于过去对自然地震的观测,地震然而,地下的流体驱动位移是受控事件,其中注入流体的性质和注入条件可以被调整和优化以避免大事件发生。该项目旨在对地下岩石的条件以及流体注入这些岩石的方式如何影响可能产生的地震活动量进行基本了解。我们将详细分析流体驱动的地震事件的行为,并将基于计算机模拟,新颖的实验室实验和全面的现场观察开发物理现实模型。我们的模型将描述特定地下性质、流体注入性质和地震事件严重性之间的关系。这些发现将与危害分析联系起来,以确定碳储存、深层地热能开采和压缩空气储能等过程或多或少可能产生震颤的条件。我们还将研究如何最好地与监管机构和公众分享我们的科学发现,以最大限度地发挥这项工作的影响。该项目将导致更好地了解诱发地震事件严重性的过程和条件,并制定战略,提高我们预防和控制这些事件的能力。该项目还将提供科学基础,以提高用于监测地下的科学仪器的精度和成本效益,以便我们能够在地震发生时识别地震,并在我们观察到地震时更好地解释地震的原因。短期内,我们需要开发这些模型,以便监管机构和决策者能够根据科学证据制定政策,使用各种相互验证的分析工具,从而确保他们的预测是稳健的。这是支持英国制定弹性,多样化,可持续和环保能源安全战略的重要一步。从长远来看,通过建立对这些地下事件的理解的信心,并展示我们控制它们的能力,我们将带领英国进入一个人类理解为什么某些地震事件发生的时代,使它们能够潜在地开发出预测其发生并降低其严重性的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Edwards其他文献
The Influence of Earthquake Magnitude on Hazard Related to Induced Seismicity
地震震级对诱发地震活动相关灾害的影响
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Benjamin Edwards - 通讯作者:
Benjamin Edwards
DEPRESSION AND AN XIETY WITH PHYSICAL ILLNESS Is caring a health hazard ? The mental health and vitality of carers of a person with a disability in Australia
因身体疾病而感到抑郁和焦虑 护理是否会危害健康?
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Benjamin Edwards;Daryl J. Higgins - 通讯作者:
Daryl J. Higgins
Earthquakes in Switzerland and surrounding regions during 2010
- DOI:
10.1007/s00015-011-0084-y - 发表时间:
2011-11-25 - 期刊:
- 影响因子:2.600
- 作者:
Nicholas Deichmann;John Clinton;Stephan Husen;Benjamin Edwards;Florian Haslinger;Donat Fäh;Domenico Giardini;Philipp Kästli;Urs Kradolfer;Stefan Wiemer - 通讯作者:
Stefan Wiemer
Analyzing and Modeling Longitudinal Security Data: Promise and Pitfalls
纵向安全数据分析和建模:前景和陷阱
- DOI:
10.1145/2818000.2818010 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Benjamin Edwards;S. Hofmeyr;S. Forrest;M. V. Eeten - 通讯作者:
M. V. Eeten
Regionally adjusted stochastic earthquake ground motion models, associated variabilities and epistemic uncertainties
区域调整随机地震地面运动模型、相关变量和认知不确定性
- DOI:
10.1007/s10950-024-10195-7 - 发表时间:
2024 - 期刊:
- 影响因子:1.6
- 作者:
Jaleena Sunny;Marco de Angelis;Benjamin Edwards - 通讯作者:
Benjamin Edwards
Benjamin Edwards的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Edwards', 18)}}的其他基金
AHRC Infrastructure Policy & Engagement Fellowships - Heritage Science & Conservation Research PART 2
AHRC 基础设施政策
- 批准号:
AH/X009254/1 - 财政年份:2022
- 资助金额:
$ 112.83万 - 项目类别:
Research Grant
Collaborative Research: Ice Forcing in Arc Magma Plumbing Systems (IF-AMPS)
合作研究:电弧岩浆管道系统中的冰强迫 (IF-AMPS)
- 批准号:
2121537 - 财政年份:2021
- 资助金额:
$ 112.83万 - 项目类别:
Standard Grant
AHRC Infrastructure Policy and Engagement Fellowships - Heritage Science and Conservation Research
AHRC 基础设施政策和参与奖学金 - 遗产科学和保护研究
- 批准号:
AH/W001462/1 - 财政年份:2021
- 资助金额:
$ 112.83万 - 项目类别:
Research Grant
Experiencing the Lost and Invisible: AR Visualisation of the Past at Bryn Celli Ddu, Anglesey
体验失落和隐形:Bryn Celli Ddu 过去的 AR 可视化,安格尔西
- 批准号:
AH/R009198/1 - 财政年份:2018
- 资助金额:
$ 112.83万 - 项目类别:
Research Grant
Rapid deployment of a seismic array in Ecuador following the April 16th 2016 M7.8 Pedernales earthquake
2016 年 4 月 16 日 M7.8 佩德纳莱斯地震后,厄瓜多尔快速部署地震台阵
- 批准号:
NE/P008828/1 - 财政年份:2016
- 资助金额:
$ 112.83万 - 项目类别:
Research Grant
RAPID: RUI: Collaborative Research: Rapid Response to Ongoing Tolbachik Eruption
RAPID:RUI:合作研究:对正在进行的托尔巴奇克火山喷发的快速反应
- 批准号:
1321648 - 财政年份:2013
- 资助金额:
$ 112.83万 - 项目类别:
Standard Grant
Collaborative Research/RUI: Testing Hypotheses on Pillow Lava Production During Glaciovolcanic Eruptions
合作研究/RUI:检验冰川火山喷发期间枕状熔岩产生的假设
- 批准号:
1220403 - 财政年份:2012
- 资助金额:
$ 112.83万 - 项目类别:
Continuing Grant
RAPID: RUI: Constraints on Fragmentation and Lava-Ice Contact From Ongoing 2010 Eyjafjallajokull Eruption, Southcentral Iceland
RAPID:RUI:2010 年冰岛中南部埃亚菲亚德拉冰川持续喷发对破碎和熔岩-冰接触的限制
- 批准号:
1039461 - 财政年份:2010
- 资助金额:
$ 112.83万 - 项目类别:
Standard Grant
RUI: Using the Products of Volcano-Ice Interaction to Constrain Paleo-ice Conditions II: Documenting Fluctuations in Continental Ice-sheets
RUI:利用火山-冰相互作用的产物来限制古冰条件 II:记录大陆冰盖的波动
- 批准号:
0910712 - 财政年份:2009
- 资助金额:
$ 112.83万 - 项目类别:
Standard Grant
Collaborative Research: Using the Products of Volcano-Ice Interaction to Constrain Paleo-Ice Conditions
合作研究:利用火山-冰相互作用的产物来限制古冰条件
- 批准号:
0439707 - 财政年份:2006
- 资助金额:
$ 112.83万 - 项目类别:
Continuing Grant
相似国自然基金
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Three problems in fluid mechanics through the lens of sparseness of the regions of intense fluid activity
从流体活动强烈区域的稀疏性角度来看流体力学中的三个问题
- 批准号:
2307657 - 财政年份:2023
- 资助金额:
$ 112.83万 - 项目类别:
Standard Grant
Conference: Systems of PDEs in Fluid Mechanics and Atmospheric Sciences
会议:流体力学和大气科学中的偏微分方程系统
- 批准号:
2309801 - 财政年份:2023
- 资助金额:
$ 112.83万 - 项目类别:
Standard Grant
Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
- 批准号:
2348453 - 财政年份:2023
- 资助金额:
$ 112.83万 - 项目类别:
Standard Grant
Computer-assisted Proofs in Fluid Mechanics and Applications
流体力学及其应用中的计算机辅助证明
- 批准号:
2247537 - 财政年份:2023
- 资助金额:
$ 112.83万 - 项目类别:
Standard Grant
Advanced Laser Diagnostics Investigating the Fluid Mechanics of Primary Breakup
先进激光诊断研究初级破裂的流体力学
- 批准号:
2879517 - 财政年份:2023
- 资助金额:
$ 112.83万 - 项目类别:
Studentship
PRIME: Unresolved fluid mechanics at liquid/gas interfaces for PRIMary brEakup of atomizing sprays
PRIME:雾化喷雾初次破裂的液体/气体界面处未解决的流体力学
- 批准号:
EP/Y028848/1 - 财政年份:2023
- 资助金额:
$ 112.83万 - 项目类别:
Research Grant
Elucidation of auditory machanism based on rigorous solution of the cochlear fluid mechanics model and its application to auditory medicine
基于耳蜗流体力学模型严密求解的听觉机制阐明及其在听觉医学中的应用
- 批准号:
23H03772 - 财政年份:2023
- 资助金额:
$ 112.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
REU Site: Fluid Mechanics with Analysis using Computations and Experiments (FM-ACE)
REU 网站:使用计算和实验进行分析的流体力学 (FM-ACE)
- 批准号:
2244313 - 财政年份:2023
- 资助金额:
$ 112.83万 - 项目类别:
Standard Grant
Fluid mechanics approach to tissue perfusion quantification in MRI
MRI 中组织灌注定量的流体力学方法
- 批准号:
10720485 - 财政年份:2023
- 资助金额:
$ 112.83万 - 项目类别:
Computational and machine learning methods for model reduction, uncertainty propagation, and parameter identification in fluid and solid mechanics
流体和固体力学中模型简化、不确定性传播和参数识别的计算和机器学习方法
- 批准号:
RGPIN-2021-02693 - 财政年份:2022
- 资助金额:
$ 112.83万 - 项目类别:
Discovery Grants Program - Individual