CAREER: Efficient and Robust Semiparametric Estimation in Time Series Models
职业:时间序列模型中高效且稳健的半参数估计
基本信息
- 批准号:9701959
- 负责人:
- 金额:$ 20.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9701959 Hodgson Economic time series models can often be reduced to a sequence of uncorrelated innovations that may be characterized by complicated forms of dependence, heterogeneity, and non-Gaussianity (i.e., non-normality) that are difficult to model. Despite long-standing awareness of this fact, the range of econometric methodologies currently used by empirical researchers rarely extends much beyond maximum likelihood techniques that assume these innovations to be Gaussian, such as ordinary least squares. The objective of the project is to facilitate the extensions of this range through the development of adaptive maximum likelihood techniques and semiparametric efficient estimators applicable in many modeling contexts of interest to financial and macroeconomics, and through the development of a software package implementing these techniques. The educational component of this CAREER award provides graduate students training in adaptive estimation techniques as part of the syllabi of advanced graduate level courses on either nonparametric econometric techniques, theory of efficient estimation, applied time series econometrics, or applied financial econometrics. Graduate students will also be trained in the use of the software developed under this project. .
小行星9701959 经济时间序列模型通常可以简化为一系列不相关的创新,其特征可能是复杂形式的依赖性,异质性和非高斯性(即,非正态性),难以建模。 尽管人们早就意识到了这一事实,但实证研究者目前使用的计量经济学方法很少超出最大似然法的范围,这种方法假设这些创新是高斯的,比如普通最小二乘法。 该项目的目标是促进这一范围的扩展,通过自适应最大似然技术和半参数有效的估计适用于许多建模的金融和宏观经济学的利益,并通过开发一个软件包实现这些技术的发展。 该职业奖的教育部分为研究生提供自适应估计技术培训,作为非参数计量经济学技术,有效估计理论,应用时间序列计量经济学或应用金融计量经济学的高级研究生课程大纲的一部分。 研究生还将接受使用在该项目下开发的软件的培训。 .
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas Hodgson其他文献
The child's right to life, survival and development
儿童的生命权、生存权和发展权
- DOI:
10.1163/157181894x00259 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Douglas Hodgson - 通讯作者:
Douglas Hodgson
Douglas Hodgson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Unary Computing in Memory for Fast, Robust and Energy-Efficient Processing
职业:内存中的一元计算,实现快速、稳健和节能的处理
- 批准号:
2339701 - 财政年份:2024
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
- 批准号:
2338159 - 财政年份:2024
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
- 批准号:
2337943 - 财政年份:2024
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
- 批准号:
2342726 - 财政年份:2023
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
CAREER: Engineering Ultra-Wide Bandgap III-Nitride Devices for Highly Efficient and Robust Electronics
职业:设计超宽带隙 III 族氮化物器件,实现高效、稳健的电子产品
- 批准号:
2145340 - 财政年份:2022
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
- 批准号:
2144751 - 财政年份:2022
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
CAREER: Coresets for Robust and Efficient Machine Learning
职业:稳健高效的机器学习核心集
- 批准号:
2146492 - 财政年份:2022
- 资助金额:
$ 20.04万 - 项目类别:
Standard Grant
CAREER: Memory-Efficient, Heterogeneity-Aware and Robust Architecture for Federated Intelligence on Edge Devices
职业:边缘设备上联邦智能的内存高效、异构感知和鲁棒架构
- 批准号:
2152580 - 财政年份:2021
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
CAREER: Memory-Efficient, Heterogeneity-Aware and Robust Architecture for Federated Intelligence on Edge Devices
职业:边缘设备上联邦智能的内存高效、异构感知和鲁棒架构
- 批准号:
2044841 - 财政年份:2021
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant
CAREER: Robust and Efficient Algorithms for Statistical Estimation and Inference
职业:用于统计估计和推理的稳健且高效的算法
- 批准号:
2045068 - 财政年份:2021
- 资助金额:
$ 20.04万 - 项目类别:
Continuing Grant