CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System

职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习

基本信息

  • 批准号:
    2144751
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-15 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Over past decades, there have existed grand challenges in developing high performance and energy-efficient computing solutions for big-data processing. Meanwhile, owing to the boom in artificial intelligence (AI), especially Deep Neural Networks (DNNs), such big-data processing requires efficient, intelligent, fast, dynamic, robust, and on-device adaptive cognitive computing. However, those requirements are not sufficiently satisfied by existing computing solutions due to the well-known power wall in silicon-based semiconductor devices, the memory wall in traditional Von-Neuman computing architectures, and computation-/memory-intensive DNN computing algorithms. This project aims to foster a systematic breakthrough in developing AI-in-Memory computing systems, through collaboratively developing ahybrid in-memory computing (IMC) hardware platform integrating the benefits of emerging non-volatile resistive memory (RRAM) and Static Random Access Memory (SRAM) technologies, as well as incorporating IMC-aware deep-learning algorithm innovations. The overarching goal of this project is to design, implement, and experimentally validate a new hybrid in-memory computing system that is collaboratively optimized for energy efficiency, inference accuracy, spatiotemporal dynamics, robustness, and on-device learning, which will greatly advance AI-based big-data processing fields such as computer vision, autonomous driving, robotics, etc. The research will also be extended into an educational platform, providing a user-friendly learning framework, and will serve the educational objectives for K-12 students, undergraduate, graduate, and under-represented students.This project will advance knowledge and produce scientific principles and tools for a new paradigm of AI-in-Memory computing featuring significant improvements in energy efficiency, speed, dynamics, robustness, and on-device learning capability. This cross-layer project spans from device, circuit, and architecture to DNN algorithm exploration. First, a hybrid RRAM-SRAM based in-memory computing chip will be designed, optimized, and fabricated. Second, based on this new computing platform, the on-device spatiotemporal dynamic neural network structure will be developed to provide an enhanced run-time computing profile (latency, resource allocation, working load, power budget, etc.), as well as improve the robustness of the system against hardware intrinsic and adversarial noise injection. Then, efficient on-device learning methodologies with the developed computing platform will be investigated. In the last thrust, an end-to-end DNN training, optimization, mapping, and evaluation CAD tool will be developed that integrates the developed hardware platform and algorithm innovations, for optimizing the software and hardware co-designs to achieve the user-defined multi-objectives in latency, energy efficiency, dynamics, accuracy, robustness, on-device adaption, etc.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。在过去的几十年里,在开发用于大数据处理的高性能和节能计算解决方案方面存在巨大挑战。与此同时,由于人工智能(AI)的蓬勃发展,特别是深度神经网络(DNN),这种大数据处理需要高效,智能,快速,动态,鲁棒和设备自适应的认知计算。然而,由于硅基半导体器件中众所周知的功率墙、传统冯-纽曼计算架构中的存储器墙以及计算/存储密集型DNN计算算法,现有计算解决方案不能充分满足这些要求。该项目旨在通过合作开发一个混合内存计算(IMC)硬件平台,整合新兴的非易失性电阻存储器(RRAM)和静态随机存取存储器(SRAM)技术的优势,以及整合IMC感知的深度学习算法创新,促进开发内存中AI计算系统的系统性突破。该项目的总体目标是设计,实现和实验验证一种新的混合内存计算系统,该系统在能源效率,推理准确性,时空动态,鲁棒性和设备上学习方面进行了协同优化,这将大大推进基于AI的大数据处理领域,如计算机视觉,自动驾驶,机器人等。提供一个用户友好的学习框架,并将服务于K-12学生,本科生,研究生和代表性不足的学生的教育目标。该项目将推进知识,并为内存中的AI计算的新范式产生科学原理和工具,其特点是能源效率,速度,动态,鲁棒性和设备上的学习能力的显着改善。这个跨层项目涵盖了从器件、电路和架构到DNN算法的探索。首先,将设计、优化和制造基于混合RRAM-SRAM的存储器内计算芯片。其次,基于这个新的计算平台,将开发设备上时空动态神经网络结构,以提供增强的运行时计算概况(延迟、资源分配、工作负载、功率预算等),以及提高系统对硬件固有和对抗性噪声注入的鲁棒性。然后,高效的设备上的学习方法与开发的计算平台将进行调查。在最后一个推力中,将开发一个端到端DNN训练,优化,映射和评估CAD工具,该工具集成了已开发的硬件平台和算法创新,用于优化软件和硬件协同设计,以实现用户定义的延迟,能效,动态,准确性,鲁棒性,设备上自适应,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DSPIMM: A Fully Digital SParse In-Memory Matrix Vector Multiplier for Communication Applications
DSPIMM:用于通信应用的全数字稀疏内存矩阵向量乘法器
DA3: Dynamic Additive Attention Adaption for Memory-Efficient On-Device Multi-Domain Learning
DA3:动态加性注意力适应,实现内存高效的设备上多域学习
A 1.23-GHz 16-kb Programmable and Generic Processing-in-SRAM Accelerator in 65nm
采用 65nm 工艺的 1.23GHz 16kb 可编程通用 SRAM 处理加速器
A 65nm RRAM Compute-in-Memory Macro for Genome Sequencing Alignment
Get More at Once: Alternating Sparse Training with Gradient Correction
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Yang;Jian Meng;J.-s. Seo;Deliang Fan
  • 通讯作者:
    Li Yang;Jian Meng;J.-s. Seo;Deliang Fan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deliang Fan其他文献

Ultra-Low power neuromorphic computing with spin-torque devices
使用自旋扭矩设备的超低功耗神经拟态计算
High performance and energy-efficient in-memory computing architecture based on SOT-MRAM
基于SOT-MRAM的高性能、高能效内存计算架构
Hybrid polymorphic logic gate using 6 terminal magnetic domain wall motion device
使用6端磁畴壁运动器件的混合多态逻辑门
Leveraging All-Spin Logic to Improve Hardware Security
利用全自旋逻辑提高硬件安全性
Computing with Spin-Transfer-Torque Devices: Prospects and Perspectives
使用自旋转移矩装置进行计算:前景与展望

Deliang Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deliang Fan', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
  • 批准号:
    2342618
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2328803
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
FET: Small: AlignMEM: Fast and Efficient DNA Sequence Alignment in Non-Volatile Magnetic RAM
FET:小型:AlignMEM:非易失性磁性 RAM 中快速高效的 DNA 序列比对
  • 批准号:
    2349802
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2414603
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
  • 批准号:
    2342726
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
  • 批准号:
    2411207
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
  • 批准号:
    2153525
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
  • 批准号:
    2019548
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Non-Volatile In-Memory Processing Unit: Memory, In-Memory Logic and Deep Neural Network
E2CDA:II 类:非易失性内存中处理单元:内存、内存中逻辑和深度神经网络
  • 批准号:
    2005209
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
FET: Small: AlignMEM: Fast and Efficient DNA Sequence Alignment in Non-Volatile Magnetic RAM
FET:小型:AlignMEM:非易失性磁性 RAM 中快速高效的 DNA 序列比对
  • 批准号:
    2003749
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

智能化AGV控制系统与高效动态充电系统关键技术研发
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
大规模动态时序图高效子图模式挖掘与查询方法研究
  • 批准号:
    2025JJ60397
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
动态裂纹扩展高效模拟的自适应非协调节点积分无网格相场法
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于动态超构表面高效表面波解耦的光场调控研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向云微服务应用动态性的高效调度研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
封闭动态煤舱环境下无人推耙机的高效拢煤路径规划研究
  • 批准号:
    QN25F030012
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向5G传感网络的宽带宽动态范围双频高效微波整流电路研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
免投影模型驱动的动态大规模MIMO高效极化传输机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
绿电工况多槽多模组碱液制氢系统拓扑优化、高效调度与动态控制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
应急救援车辆高效智能控制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
  • 批准号:
    24K16962
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Efficient and dynamic visualization study of electromagnetic properties of iron-based alloys containing irradiation formed cavities and hierarchical structures
含辐照形成空腔和分层结构的铁基合金电磁性能的高效动态可视化研究
  • 批准号:
    23H01890
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CRII: CNS: Towards Robust and Efficient Dynamic Spectrum Sharing with Knowledge Transfer
CRII:CNS:通过知识转移实现稳健、高效的动态频谱共享
  • 批准号:
    2245918
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
  • 批准号:
    2342726
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Efficient and rapidly SCAlable EU-wide evidence-driven Pandemic response plans through dynamic Epidemic data assimilation
通过动态流行病数据同化,制定高效、快速、可扩展的欧盟范围内证据驱动的流行病应对计划
  • 批准号:
    10051037
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
Dynamic Drive Control Scheme for Energy-Efficient Electric Drive Systems
节能电力驱动系统的动态驱动控制方案
  • 批准号:
    2334438
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RI: Small: Toward Efficient and Robust Dynamic Scene Understanding Based on Visual Correspondences
RI:小:基于视觉对应的高效、鲁棒的动态场景理解
  • 批准号:
    2310254
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Efficient Learning of Equilibria in Dynamic Bayesian Games with Nash, Bellman and Lyapunov
职业生涯:与纳什、贝尔曼和李亚普诺夫一起有效学习动态贝叶斯博弈中的均衡
  • 批准号:
    2238838
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Machine Learning-Based Adaptation of Data Sampling and Reconstruction for Efficient Dynamic MRI
基于机器学习的数据采样和重建适应高效动态 MRI
  • 批准号:
    10705033
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
Collaborative Research: SWIFT: Intelligent Dynamic Spectrum Access (IDEA): An Efficient Learning Approach to Enhancing Spectrum Utilization and Coexistence
合作研究:SWIFT:智能动态频谱接入 (IDEA):增强频谱利用和共存的有效学习方法
  • 批准号:
    2128594
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了