CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System

职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习

基本信息

  • 批准号:
    2144751
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-15 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Over past decades, there have existed grand challenges in developing high performance and energy-efficient computing solutions for big-data processing. Meanwhile, owing to the boom in artificial intelligence (AI), especially Deep Neural Networks (DNNs), such big-data processing requires efficient, intelligent, fast, dynamic, robust, and on-device adaptive cognitive computing. However, those requirements are not sufficiently satisfied by existing computing solutions due to the well-known power wall in silicon-based semiconductor devices, the memory wall in traditional Von-Neuman computing architectures, and computation-/memory-intensive DNN computing algorithms. This project aims to foster a systematic breakthrough in developing AI-in-Memory computing systems, through collaboratively developing ahybrid in-memory computing (IMC) hardware platform integrating the benefits of emerging non-volatile resistive memory (RRAM) and Static Random Access Memory (SRAM) technologies, as well as incorporating IMC-aware deep-learning algorithm innovations. The overarching goal of this project is to design, implement, and experimentally validate a new hybrid in-memory computing system that is collaboratively optimized for energy efficiency, inference accuracy, spatiotemporal dynamics, robustness, and on-device learning, which will greatly advance AI-based big-data processing fields such as computer vision, autonomous driving, robotics, etc. The research will also be extended into an educational platform, providing a user-friendly learning framework, and will serve the educational objectives for K-12 students, undergraduate, graduate, and under-represented students.This project will advance knowledge and produce scientific principles and tools for a new paradigm of AI-in-Memory computing featuring significant improvements in energy efficiency, speed, dynamics, robustness, and on-device learning capability. This cross-layer project spans from device, circuit, and architecture to DNN algorithm exploration. First, a hybrid RRAM-SRAM based in-memory computing chip will be designed, optimized, and fabricated. Second, based on this new computing platform, the on-device spatiotemporal dynamic neural network structure will be developed to provide an enhanced run-time computing profile (latency, resource allocation, working load, power budget, etc.), as well as improve the robustness of the system against hardware intrinsic and adversarial noise injection. Then, efficient on-device learning methodologies with the developed computing platform will be investigated. In the last thrust, an end-to-end DNN training, optimization, mapping, and evaluation CAD tool will be developed that integrates the developed hardware platform and algorithm innovations, for optimizing the software and hardware co-designs to achieve the user-defined multi-objectives in latency, energy efficiency, dynamics, accuracy, robustness, on-device adaption, etc.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)的全部或部分资助的。在过去的几十年中,在开发用于大数据处理的高性能和节能计算解决方案方面存在着巨大的挑战。同时,由于人工智能的繁荣(AI),尤其是深神经网络(DNNS),因此如此大的数据处理需要有效,智能,快速,动态,强大的,健壮的和exp依的自适应认知计算。但是,由于基于硅的半导体设备中众所周知的电源壁,传统的von-neuman计算体系结构中的记忆墙以及计算/内存密集型DNN计算算法,因此由于现有的计算解决方案无法充分满足这些要求。 This project aims to foster a systematic breakthrough in developing AI-in-Memory computing systems, through collaboratively developing ahybrid in-memory computing (IMC) hardware platform integrating the benefits of emerging non-volatile resistive memory (RRAM) and Static Random Access Memory (SRAM) technologies, as well as incorporating IMC-aware deep-learning algorithm innovations.该项目的总体目标是设计,实施和实验验证一个新的混合内存中内存计算系统,该系统对能源效率,推理的准确性,时空动态,稳健性和设备学习进行了协作优化,该系统将大大推动AI基于AI的计算机视野,以及诸如Robists oberics of Robics等,该领域将大大推动AI基于AI的研究。用户友好的学习框架,并将为K-12学生,本科,研究生和代表性不足的学生提供教育目标。该项目将促进知识并生成科学原理和工具,以实现AI-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In-In计算计算范围,这些计算具有重大改进的能力,速度,动力学,动力学,强大的,鲁棒性,鲁棒性,稳健性,以及竞技场,以及竞技学能力。这个跨层项目跨越设备,电路和体系结构到DNN算法探索。首先,将设计,优化和制造一个基于混合RRAM-SRAM的内存计算芯片。其次,基于这个新的计算平台,将开发在设备上的时空动态神经网络结构,以提供增强的运行时计算配置文件(延迟,资源分配,工作负载,功率预算等),并提高系统对硬件内固有性和对抗性噪声的稳健性。然后,将研究使用开发的计算平台的有效的启动学习方法。 In the last thrust, an end-to-end DNN training, optimization, mapping, and evaluation CAD tool will be developed that integrates the developed hardware platform and algorithm innovations, for optimizing the software and hardware co-designs to achieve the user-defined multi-objectives in latency, energy efficiency, dynamics, accuracy, robustness, on-device adaption, etc.This award reflects NSF's statutory mission and has been认为值得通过基金会的智力优点和更广泛影响的评论标准来评估值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DSPIMM: A Fully Digital SParse In-Memory Matrix Vector Multiplier for Communication Applications
DSPIMM:用于通信应用的全数字稀疏内存矩阵向量乘法器
DA3: Dynamic Additive Attention Adaption for Memory-Efficient On-Device Multi-Domain Learning
DA3:动态加性注意力适应,实现内存高效的设备上多域学习
A 1.23-GHz 16-kb Programmable and Generic Processing-in-SRAM Accelerator in 65nm
采用 65nm 工艺的 1.23GHz 16kb 可编程通用 SRAM 处理加速器
Hybrid RRAM/SRAM in-Memory Computing for Robust DNN Acceleration
  • DOI:
    10.1109/tcad.2022.3197516
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Gokul Krishnan;Zhenyu Wang;Injune Yeo;Li Yang-;Jian Meng;Maximilian Liehr;R. Joshi;N. Cady;Deliang Fan;Jae-sun Seo;Yu Cao
  • 通讯作者:
    Gokul Krishnan;Zhenyu Wang;Injune Yeo;Li Yang-;Jian Meng;Maximilian Liehr;R. Joshi;N. Cady;Deliang Fan;Jae-sun Seo;Yu Cao
FP-IMC: A 28nm All-Digital Configurable Floating-Point In-Memory Computing Macro
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deliang Fan其他文献

High performance and energy-efficient in-memory computing architecture based on SOT-MRAM
基于SOT-MRAM的高性能、高能效内存计算架构
Hybrid polymorphic logic gate using 6 terminal magnetic domain wall motion device
使用6端磁畴壁运动器件的混合多态逻辑门
Ultra-Low power neuromorphic computing with spin-torque devices
使用自旋扭矩设备的超低功耗神经拟态计算
Leveraging All-Spin Logic to Improve Hardware Security
利用全自旋逻辑提高硬件安全性
T-BFA: <underline>T</underline>argeted <underline>B</underline>it-<underline>F</underline>lip Adversarial Weight <underline>A</underline>ttack
T-BFA:<underline>T</underline>有针对性的<underline>B</underline>it-<underline>F</underline>唇形对抗重量<underline>A</underline>攻击

Deliang Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deliang Fan', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
  • 批准号:
    2342618
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2328803
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
FET: Small: AlignMEM: Fast and Efficient DNA Sequence Alignment in Non-Volatile Magnetic RAM
FET:小型:AlignMEM:非易失性磁性 RAM 中快速高效的 DNA 序列比对
  • 批准号:
    2349802
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2414603
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
  • 批准号:
    2342726
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
  • 批准号:
    2411207
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
  • 批准号:
    2153525
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
  • 批准号:
    2019548
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Non-Volatile In-Memory Processing Unit: Memory, In-Memory Logic and Deep Neural Network
E2CDA:II 类:非易失性内存中处理单元:内存、内存中逻辑和深度神经网络
  • 批准号:
    2005209
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
FET: Small: AlignMEM: Fast and Efficient DNA Sequence Alignment in Non-Volatile Magnetic RAM
FET:小型:AlignMEM:非易失性磁性 RAM 中快速高效的 DNA 序列比对
  • 批准号:
    2003749
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

面向大规模动态实时感知网络的高效分布式资源管控研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自适应动态规划的随机系统脉冲控制器高效率设计与实现
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向计算机视觉的高效动态网络构建与自适应推理方法研究
  • 批准号:
    62206215
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
高效螺杆真空干泵稀薄气体输运理论及动态啮合间隙设计的不敏感性研究
  • 批准号:
    U22A20179
  • 批准年份:
    2022
  • 资助金额:
    250.00 万元
  • 项目类别:
    联合基金项目
基于自适应动态规划的随机系统脉冲控制器高效率设计与实现
  • 批准号:
    62203120
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
  • 批准号:
    2342726
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Learning of Equilibria in Dynamic Bayesian Games with Nash, Bellman and Lyapunov
职业生涯:与纳什、贝尔曼和李亚普诺夫一起有效学习动态贝叶斯博弈中的均衡
  • 批准号:
    2238838
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: RF Co-Designated Fully-Directional Antenna Interfaces for Dynamic and Efficient Spectrum Access
事业:射频共同指定的全向天线接口,用于动态和高效的频谱访问
  • 批准号:
    1941315
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Highly-Efficient Dynamic Prediction Models for Quality Improvement in Cold Rolling
职业:用于提高冷轧质量的高效动态预测模型
  • 批准号:
    1555531
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Highly-Efficient Dynamic Prediction Models for Quality Improvement in Cold Rolling
职业:用于提高冷轧质量的高效动态预测模型
  • 批准号:
    1454405
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了