CAREER: Memory-Efficient, Heterogeneity-Aware and Robust Architecture for Federated Intelligence on Edge Devices
职业:边缘设备上联邦智能的内存高效、异构感知和鲁棒架构
基本信息
- 批准号:2044841
- 负责人:
- 金额:$ 47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2021-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent trend of migrating computation from the centralized cloud to distributed edge devices is reshaping the landscape of today’s Internet, especially under the unprecedented challenges of the COVID19 pandemic. With privacy being a critical concern in data aggregation, Federated Learning emerges as a promising solution to such privacy-utility challenge. It pushes the computation towards consumer’s edge devices, where the data is generated. By exchanging statistical information, the participants perform collaborative learning in a distributed fashion. Unfortunately, the original design still faces new system-architectural challenges from limited memory, software/hardware heterogeneity, security and statistical diversity from different edge devices. The overarching goal of this CAREER project is to design, optimize and implement a memory-efficient, heterogeneity-aware and robust architecture for federated learning on consumer’s edge devices. In particular, it aims to: 1) remove the memory barriers of running the computational-intensive learning tasks; 2) resolve the software and hardware heterogeneity among various kinds of devices; 3) secure the information exchange and the machine learning backend. The research will provide a stack of solutions to address the urging needs in realizing collaborative intelligence on edge devices with computation/memory/energy-efficiencies, security and robustness. This research will address an urgent problem to bridge the gap between the vast data available from consumer’s edge devices and the rising interest of utilizing such private data to improve our wellbeing. The algorithms and tools developed in this CAREER project will lay the foundations to a plethora of new applications on massively distributed edge devices, as the essential elements for building a smart, connected and resilient community. The CAREER program will advance STEM education by developing new educational components related to machine learning, edge computing and security. This includes diverse outreach plans of cybersecurity summer camps, junior research symposium, high school instructor mentorship, coding competitions and the inclusion of underrepresented minority and women engineers. The potential use cases will be also explored with the collaborating industrial partners to enrich their business models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近将计算从集中式云迁移到分布式边缘设备的趋势正在重塑当今互联网的格局,特别是在COVID 19大流行的前所未有的挑战下。随着隐私成为数据聚合中的一个关键问题,联邦学习成为解决这种隐私效用挑战的一个有前途的解决方案。它将计算推向消费者的边缘设备,在那里生成数据。通过交换统计信息,参与者以分布式方式进行协作学习。不幸的是,最初的设计仍然面临着来自有限内存、软件/硬件异构性、安全性和不同边缘设备的统计多样性的新系统架构挑战。这个CAREER项目的首要目标是设计、优化和实现一个内存高效、异构感知和健壮的架构,用于在消费者的边缘设备上进行联合学习。具体而言,其目的是:1)消除运行计算密集型学习任务的内存障碍; 2)解决各种设备之间的软件和硬件异构性; 3)保护信息交换和机器学习后端。该研究将提供一系列解决方案,以满足在具有计算/内存/能源效率,安全性和鲁棒性的边缘设备上实现协作智能的迫切需求。这项研究将解决一个紧迫的问题,即弥合消费者边缘设备提供的大量数据与利用这些私人数据改善我们福祉的日益增长的兴趣之间的差距。在这个CAREER项目中开发的算法和工具将为大规模分布式边缘设备上的大量新应用奠定基础,作为构建智能,连接和弹性社区的基本要素。CAREER计划将通过开发与机器学习,边缘计算和安全相关的新教育组件来推进STEM教育。这包括网络安全夏令营、初级研究研讨会、高中教师辅导、编码竞赛等各种外联计划,以及将代表性不足的少数民族和女工程师纳入其中。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cong Wang其他文献
Traditional two-dimendional mesenchymal stem cells (MSCs) are better than spheroid MSCs on promoting retinal ganglion cells survival and axon regeneration
传统二维间充质干细胞(MSCs)在促进视网膜神经节细胞存活和轴突再生方面优于球状MSCs
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.4
- 作者:
Wei Huang;Cong Wang;Lili Xie;Xiaoling Wang;Lusi Zhang;Changzheng Chen;Bing Jiang - 通讯作者:
Bing Jiang
The evolution of magnetic transitions, negative thermal expansion and unusual electronic transport properties in Mn3AgxMnyN
Mn3AgxMnyN 中磁转变、负热膨胀和异常电子传输特性的演变
- DOI:
10.1016/j.ssc.2015.08.024 - 发表时间:
2015-11 - 期刊:
- 影响因子:2.1
- 作者:
Lei Wang;Pengwei Hu;Muhammad Imran Malik;Cong Wang - 通讯作者:
Cong Wang
Giant zero-field cooling exchange-bias-like behavior in antiperovskite Mn3Co0.61Mn0.39N compound
反钙钛矿Mn3Co0.61Mn0.39N化合物中的巨大零场冷却交换偏置行为
- DOI:
10.1103/physrevmaterials.3.024409 - 发表时间:
2019 - 期刊:
- 影响因子:3.4
- 作者:
Ying Sun;Pengwei Hu;Kewen Shi;Hui Wu;Sihao Deng;Qingzhen Huang;Zhiyong Mao;Ping Song;Lei Wang;Weichang Hao;Shenghua Deng;Cong Wang - 通讯作者:
Cong Wang
Genome-wide interaction target profiling reveals a novel Peblr20-eRNA activation pathway to control stem cell pluripotency
全基因组相互作用靶标分析揭示了一种控制干细胞多能性的新型 Peblr20-eRNA 激活途径。
- DOI:
10.7150/thno.39093 - 发表时间:
2020 - 期刊:
- 影响因子:12.4
- 作者:
Cong Wang;Lin Jia;Yichen Wang;Zhonghua Du;Lei Zhou;Xue Wen;Hui Li;Shilin Zhang;Huiling Chen;Naifei Chen;Jingcheng Chen;Yanbo Zhu;Yuanyuan Nie;Ilkay Celic;Sujun Gao;Songling Zhang;Andrew R.Hoffman;Wei Li;Ji-Fan Hu;Jiuwei Cui - 通讯作者:
Jiuwei Cui
Neural learning control for discrete-time nonlinear systems in pure-feedback form
纯反馈形式离散时间非线性系统的神经学习控制
- DOI:
10.1007/s11432-020-3138-7 - 发表时间:
2022-01 - 期刊:
- 影响因子:0
- 作者:
Min Wang;Haotian Shi;Cong Wang;Jun Fu - 通讯作者:
Jun Fu
Cong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cong Wang', 18)}}的其他基金
CAREER: Memory-Efficient, Heterogeneity-Aware and Robust Architecture for Federated Intelligence on Edge Devices
职业:边缘设备上联邦智能的内存高效、异构感知和鲁棒架构
- 批准号:
2152580 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CAREER: Enhancing Robot Physical Intelligence via Crowdsourced Surrogate Learning
职业:通过众包代理学习增强机器人物理智能
- 批准号:
1944069 - 财政年份:2020
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CRII: SHF Software and Hardware Architecture Co-Design for Deep Learning on Mobile Device
CRII:移动设备深度学习的SHF软硬件架构协同设计
- 批准号:
1850045 - 财政年份:2019
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
STTR Phase I: Plasmonic Carbon dioxide to fuel photocatalysis by solar energy
STTR 第一阶段:等离子体二氧化碳通过太阳能为光催化提供燃料
- 批准号:
1549710 - 财政年份:2016
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
相似国自然基金
CREB在杏仁核神经环路memory allocation中的作用和机制研究
- 批准号:31171079
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
面向多核处理器的硬软件协作Transactional Memory系统结构
- 批准号:60873053
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Unary Computing in Memory for Fast, Robust and Energy-Efficient Processing
职业:内存中的一元计算,实现快速、稳健和节能的处理
- 批准号:
2339701 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
CRII: OAC: Towards Efficient Memory Management on Terabyte-Scale CXL-Enabled Tiered Memory Systems
CRII:OAC:在支持 CXL 的 TB 级分层内存系统上实现高效内存管理
- 批准号:
2348350 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
- 批准号:
2345655 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
ECCS-EPSRC. Acoustically Induced Ferromagnetic Resonance (FMR) Assisted Energy Efficient Spin Torque Memory Devices
ECCS-EPSRC。
- 批准号:
EP/X036715/1 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Research Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CSR: Small: Cache-Coherent Accelerators for Efficient Persistent Memory Programming
CSR:小型:用于高效持久内存编程的缓存一致性加速器
- 批准号:
2245999 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
合作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
- 批准号:
2312366 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
协作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
- 批准号:
2403723 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CAREER: Leveraging physical properties of modern flash memory chips for resilient, secure, and energy-efficient edge storage systems
职业:利用现代闪存芯片的物理特性打造弹性、安全且节能的边缘存储系统
- 批准号:
2346853 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant