Partial Differential Equations and Several Complex Variables
偏微分方程和多个复变量
基本信息
- 批准号:9703678
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-06-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9703678 Stanton The supported project lies in the area of several complex variables; in particular, it involves the study of real hypersurfaces in complex Euclidean space. Specifically, the investigator plans to find a complete normal form for the defining equation of a rigid hypersurface in complex Euclidean space; find a necessary and sufficient condition for analyticity of infinitesimal Cauchy-Riemann automorphisms; study the evolution of a strictly convex hypersurface by the Levi flow; study the off-diagonal small time behavior of the heat kernel on a CR-manifold; understand the singularities of kernels arising in the study of the Neumann problem and the corresponding heat kernel. Real hypersurfaces in complex Euclidean space generalize surfaces in space: they are higher dimensional analogs of surfaces sitting inside a space equipped with a complex structure. Complex structures - locally, arrays of complex numbers - were first introduced in the study of polynomial equations; they continue to find many uses in various parts of mathematics, often leading to conceptual as well as computational simplifications.
小行星9703678 支持的项目是在几个复变量的领域,特别是,它涉及到复欧几里德空间中的真实的超曲面的研究。 具体而言,研究者计划在复欧氏空间中找到刚性超曲面定义方程的完全规范形;找到无穷小Cauchy-Riemann自同构解析的充要条件;研究严格凸超曲面的Levi流演化;研究CR-流形上热核的非对角小时间行为;理解在诺依曼问题和相应的热核研究中出现的核的奇异性。 复欧氏空间中的真实的超曲面推广了空间中的曲面:它们是位于具有复杂结构的空间内的曲面的高维类似物。复数结构--局部复数数组--最初是在多项式方程的研究中引入的;它们在数学的各个部分都有很多用途,通常会导致概念和计算的简化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nancy Stanton其他文献
Spontaneous, field tested and tethered flight in healthy and infected Magicicada septendecim L.
- DOI:
10.1007/bf00377168 - 发表时间:
1983-03-01 - 期刊:
- 影响因子:2.300
- 作者:
Jo Ann White;Phillip Ganter;Richard McFarland;Nancy Stanton;Monte Lloyd - 通讯作者:
Monte Lloyd
Nancy Stanton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nancy Stanton', 18)}}的其他基金
Mathematical Sciences: Partial Differential Equations and Several Complex Variables
数学科学:偏微分方程和多个复变量
- 批准号:
9301345 - 财政年份:1993
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations and Several Complex Variables
数学科学:偏微分方程和几个复变量
- 批准号:
9101113 - 财政年份:1991
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations and Several Complex Variables
数学科学:偏微分方程和几个复变量
- 批准号:
8901547 - 财政年份:1989
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
REU: Parasite Communities in the Wyoming Ground Squirrel
REU:怀俄明州地松鼠的寄生虫群落
- 批准号:
8909887 - 财政年份:1989
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Spectrum of Complex Laplacians (Mathematics)
复杂拉普拉斯算子的谱(数学)
- 批准号:
8600042 - 财政年份:1986
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Eigenvalues of Complex Laplacians
数学科学:复杂拉普拉斯算子的特征值
- 批准号:
8601267 - 财政年份:1986
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Eigenvalues of Complex Laplacians
数学科学:复杂拉普拉斯算子的特征值
- 批准号:
8200442 - 财政年份:1982
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Niche Analysis of the Bee-Forb Community
Bee-Forb 社区的利基分析
- 批准号:
7514044 - 财政年份:1975
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
CISE-ANR: Small: Evolutional deep neural network for resolution of high-dimensional partial differential equations
CISE-ANR:小型:用于求解高维偏微分方程的进化深度神经网络
- 批准号:
2214925 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant