Complex Differential Geometry
复微分几何
基本信息
- 批准号:9703884
- 负责人:
- 金额:$ 7.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9703884 Zheng This project lies in the area of complex differential geometry. The investigator earlier showed that the ration of the two Chern numbers of a nonpositively curved compact Kahler surface is always between two and three; he now wishes to generalize that work to higher dimensional settings. In addition, the investigator is to pursue the remaining classification in the famous Kodaira-Enriques classification for complex surfaces. Finally, the investigator would like to construct a certain class of nonpositively curved Kahler manifolds. Kahler manifolds generalize curved surfaces, and are based on complex numbers. The Chern numbers of a Kahler manifold are certain integers that are topologically invariant, i.e., they are quantities that are unchanged under small deformation of the manifold. Kahler manifolds have found applications in other parts of mathematics as well as theoretical physics. For example, the famous Yau-Calabi spaces used in the string model of the universe are Kahler manifolds.
小行星9703884 这个项目是在复杂的微分几何领域。这位研究者先前证明了非正曲紧致卡勒曲面的两个陈数之比总是在2和3之间;他现在希望将这项工作推广到更高维的情况。此外,研究人员将继续进行著名的Kodaira-Enriques复杂表面分类中的剩余分类。最后,研究者想构造一类非正弯曲的Kahler流形。 Kahler流形是曲面的推广,并且基于复数。Kahler流形的Chern数是某些拓扑不变的整数,即,它们是在流形的小变形下不变的量。卡勒流形在数学的其他部分以及理论物理中也有应用。例如,宇宙弦模型中著名的Yau-Calabi空间就是Kahler流形。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fangyang Zheng其他文献
A local and global splitting result for real Kähler Euclidean submanifolds
- DOI:
10.1007/s00013-004-1204-y - 发表时间:
2005-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Luis A. Florit;Fangyang Zheng - 通讯作者:
Fangyang Zheng
Streets-Tian conjecture holds for 2-step solvmanifolds
- DOI:
10.1016/j.geomphys.2024.105390 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:
- 作者:
Shuwen Chen;Fangyang Zheng - 通讯作者:
Fangyang Zheng
A note on compact homogeneous manifolds with Bismut parallel torsion
关于具有 Bismut 平行扭转的紧齐质流形的注解
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Fabio Podesta;Fangyang Zheng - 通讯作者:
Fangyang Zheng
Streets-Tian Conjecture on several special types of Hermitian manifolds
- DOI:
10.1007/s10231-025-01597-6 - 发表时间:
2025-07-14 - 期刊:
- 影响因子:0.900
- 作者:
Yuqin Guo;Fangyang Zheng - 通讯作者:
Fangyang Zheng
Isometric embedding of Kähler manifolds with nonpositive sectional curvature
- DOI:
10.1007/bf01446318 - 发表时间:
1996-01-01 - 期刊:
- 影响因子:1.400
- 作者:
Fangyang Zheng - 通讯作者:
Fangyang Zheng
Fangyang Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fangyang Zheng', 18)}}的其他基金
Complex Differential Geometry: Nonpositively Curved and Nonnegatively Curved Manifolds
复微分几何:非正曲流形和非负曲流形
- 批准号:
0705468 - 财政年份:2007
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
Complex Differential Geometry and Rigidity
复微分几何和刚度
- 批准号:
0203647 - 财政年份:2002
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
Conference on geometry in dimension 3 and 4
3维和4维几何会议
- 批准号:
0102392 - 财政年份:2001
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Borderline Manifolds and Rigidity in Kahler Geometry
数学科学:卡勒几何中的边界流形和刚性
- 批准号:
9308239 - 财政年份:1993
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
Mathematical Sciences: On Certain Rigidity Problems in Kaehler Geometry
数学科学:关于凯勒几何中的某些刚性问题
- 批准号:
9105185 - 财政年份:1991
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
相似海外基金
Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
- 批准号:
2203607 - 财政年份:2022
- 资助金额:
$ 7.95万 - 项目类别:
Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
2231783 - 财政年份:2022
- 资助金额:
$ 7.95万 - 项目类别:
Continuing Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
- 批准号:
2203273 - 财政年份:2022
- 资助金额:
$ 7.95万 - 项目类别:
Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
1903147 - 财政年份:2019
- 资助金额:
$ 7.95万 - 项目类别:
Continuing Grant
Workshop on Complex Differential Geometry
复微分几何研讨会
- 批准号:
1804586 - 财政年份:2018
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
Generalized complex structures, 4 dimensional differential topology, noncommutative algebraic geometry and derived category
广义复结构、4维微分拓扑、非交换代数几何和派生范畴
- 批准号:
16K13755 - 财政年份:2016
- 资助金额:
$ 7.95万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
The quaternionic holomorphic differential geometry of totally complex submanifolds
全复子流形的四元全纯微分几何
- 批准号:
25400065 - 财政年份:2013
- 资助金额:
$ 7.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Twistor lifts for submanifolds in quaternion Kaehler manifolds and quaternionic complex differential geometry
四元数凯勒流形和四元复微分几何中子流形的扭转升力
- 批准号:
23540081 - 财政年份:2011
- 资助金额:
$ 7.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
International Conference on Several Complex Variables, Complex Geometry and Partial Differential Equations
多复变量、复几何与偏微分方程国际会议
- 批准号:
0901662 - 财政年份:2009
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
RUI: Collaborative Research: Elliptic Partial Differential Equations on Singular Manifolds and Applications in Complex Geometry
RUI:合作研究:奇异流形上的椭圆偏微分方程及其在复杂几何中的应用
- 批准号:
0901202 - 财政年份:2009
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant