Complex Differential Geometry: Nonpositively Curved and Nonnegatively Curved Manifolds

复微分几何:非正曲流形和非负曲流形

基本信息

项目摘要

This grant will be used to research problems in Differential Geometry. In particular, we will investigate the uniformization theory for positively curved complete Kaehler manifolds, the geometry and topology of nonpositively curved Riemannian manifolds with degenerate Ricci tensor, and certain Chern number inequalities for nonpositively curved compact Kaehler manifolds. The intellectual merit of this project derives in part from the central importance of these problems to the general theory of Differential Geometry for real and complex manifolds. We have previously worked on these topics and obtained some results, and we believe our specific approaches of this project offer the promise of important progress.We believe that the project will have broad impact to the basic theory of Differential Geometry for Kaehler and Riemannian manifolds. Our approach here is to study some specific but very representative problems. Any progress made will advance the understanding in the area of Differential Geometry and related areas such as Topology, Geometric Analysis, Several Complex Variables and Algebraic Geometry. These areas are some of the major branches of the contemporary mathematics.
这笔赠款将用于研究微分几何问题。特别地,我们将研究正弯曲完备Kaehler流形的一致化理论,具有退化Ricci张量的非正弯曲黎曼流形的几何和拓扑,以及非正弯曲紧致Kaehler流形的某些Chern数不等式。 这个项目的智力价值部分来自于这些问题对真实的和复杂流形的微分几何一般理论的核心重要性。我们以前在这些课题上做过工作并取得了一些成果,我们相信我们的具体方法为这个项目提供了重要进展的希望。我们相信这个项目将对Kaehler和Riemann流形的微分几何基础理论产生广泛的影响。我们在这里的做法是研究一些具体的,但很有代表性的问题。所取得的任何进展都将促进对微分几何领域以及拓扑学、几何分析、多复变和代数几何等相关领域的理解。这些领域是当代数学的一些主要分支。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fangyang Zheng其他文献

A local and global splitting result for real Kähler Euclidean submanifolds
  • DOI:
    10.1007/s00013-004-1204-y
  • 发表时间:
    2005-01-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Luis A. Florit;Fangyang Zheng
  • 通讯作者:
    Fangyang Zheng
Streets-Tian conjecture holds for 2-step solvmanifolds
  • DOI:
    10.1016/j.geomphys.2024.105390
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shuwen Chen;Fangyang Zheng
  • 通讯作者:
    Fangyang Zheng
A note on compact homogeneous manifolds with Bismut parallel torsion
关于具有 Bismut 平行扭转的紧齐质流形的注解
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fabio Podesta;Fangyang Zheng
  • 通讯作者:
    Fangyang Zheng
Streets-Tian Conjecture on several special types of Hermitian manifolds
Isometric embedding of Kähler manifolds with nonpositive sectional curvature
  • DOI:
    10.1007/bf01446318
  • 发表时间:
    1996-01-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Fangyang Zheng
  • 通讯作者:
    Fangyang Zheng

Fangyang Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fangyang Zheng', 18)}}的其他基金

Complex Differential Geometry and Rigidity
复微分几何和刚度
  • 批准号:
    0203647
  • 财政年份:
    2002
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Conference on geometry in dimension 3 and 4
3维和4维几何会议
  • 批准号:
    0102392
  • 财政年份:
    2001
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Complex Differential Geometry
复微分几何
  • 批准号:
    9703884
  • 财政年份:
    1997
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Borderline Manifolds and Rigidity in Kahler Geometry
数学科学:卡勒几何中的边界流形和刚性
  • 批准号:
    9308239
  • 财政年份:
    1993
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Mathematical Sciences: On Certain Rigidity Problems in Kaehler Geometry
数学科学:关于凯勒几何中的某些刚性问题
  • 批准号:
    9105185
  • 财政年份:
    1991
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
  • 批准号:
    2203607
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
  • 批准号:
    2231783
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
  • 批准号:
    2203273
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
  • 批准号:
    1903147
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Workshop on Complex Differential Geometry
复微分几何研讨会
  • 批准号:
    1804586
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Generalized complex structures, 4 dimensional differential topology, noncommutative algebraic geometry and derived category
广义复结构、4维微分拓扑、非交换代数几何和派生范畴
  • 批准号:
    16K13755
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
The quaternionic holomorphic differential geometry of totally complex submanifolds
全复子流形的四元全纯微分几何
  • 批准号:
    25400065
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Twistor lifts for submanifolds in quaternion Kaehler manifolds and quaternionic complex differential geometry
四元数凯勒流形和四元复微分几何中子流形的扭转升力
  • 批准号:
    23540081
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
International Conference on Several Complex Variables, Complex Geometry and Partial Differential Equations
多复变量、复几何与偏微分方程国际会议
  • 批准号:
    0901662
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: Elliptic Partial Differential Equations on Singular Manifolds and Applications in Complex Geometry
RUI:合作研究:奇异流形上的椭圆偏微分方程及其在复杂几何中的应用
  • 批准号:
    0901202
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了