The Algebraic Structure of Topological Field Theory
拓扑场论的代数结构
基本信息
- 批准号:9704320
- 负责人:
- 金额:$ 11.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-06-01 至 2000-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9704320 Getzler In this project the investigator is to clarify the algebraic structures underlying certain recent discoveries in theoretical physics including the two-dimensional topological sigma model, topological gravity, and Gromov-Witten invariants. In particular, a structure theory for Gromov-Witten invariants is to be derived, and Gromov-Witten invariants of higher genus are to be computed. In mathematical terms, these invariants relate to various enumerative questions in algebraic geometry. For example, Gromov-Witten invariants of genus zero appear in the so called mirror symmetry phenomenon. Gromov-Witten invariants originally arose in theoretical physics - they describe a coupling of topological gravity with a model of conformal field theory. They play an important role in the popular 10-dimensional string model of the universe. The string theory model contains six hidden dimensions which form a tightly curved space known as Calabi-Yau manifold; Gromov-Witten invariants can be used to study various mathematical properties of Calabi-Yau manifolds.
9704320盖茨勒在这个项目中,研究人员将阐明理论物理中某些最新发现背后的代数结构,包括二维拓扑西格玛模型、拓扑引力和格罗莫夫-维腾不变量。特别地,推导了Gromov-Witten不变量的结构理论,并计算了高亏格的Gromov-Witten不变量。在数学术语中,这些不变量与代数几何中的各种计数问题有关。例如,零亏格的Gromov-Witten不变量出现在所谓的镜像对称现象中。Gromov-Witten不变量最初出现在理论物理中--它们描述了拓扑引力与保形场理论模型的耦合。它们在流行的宇宙10维弦模型中扮演着重要的角色。弦理论模型包含六个隐藏维度,它们形成了一个称为Calabi-Yau流形的紧曲空间;Gromov-Witten不变量可用于研究Calabi-Yau流形的各种数学性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ezra Getzler其他文献
Ezra Getzler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ezra Getzler', 18)}}的其他基金
Algebraic structures in topological field theory
拓扑场论中的代数结构
- 批准号:
0906369 - 财政年份:2009
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Geometry and Physics EMSW21-RTG
几何和物理 EMSW21-RTG
- 批准号:
0636646 - 财政年份:2007
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Topological Field Theory and Integrable Systems
拓扑场论和可积系统
- 批准号:
0505669 - 财政年份:2005
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Geometry and Topology of String Theory
弦理论的几何和拓扑
- 批准号:
0401953 - 财政年份:2004
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Topological Field Theory and Integrable Systems
拓扑场论和可积系统
- 批准号:
0072508 - 财政年份:2000
- 资助金额:
$ 11.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Physics and Noncommutative Differential Geometry
数学科学:数学物理和非交换微分几何
- 批准号:
9404481 - 财政年份:1994
- 资助金额:
$ 11.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Physics and Non- commutative Differential Geometry
数学科学:数学物理和非交换微分几何
- 批准号:
9207078 - 财政年份:1992
- 资助金额:
$ 11.2万 - 项目类别:
Continuing grant
Mathematical Sciences: Analysis and Geometry of Infinite Dimensional Manifolds
数学科学:无限维流形的分析与几何
- 批准号:
9008233 - 财政年份:1990
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Analysis on Loop Space
数学科学:循环空间分析
- 批准号:
8700621 - 财政年份:1987
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
相似海外基金
Room-temperature flexible manipulation of the quantum-metric structure in topological chiral antiferromagnets
拓扑手性反铁磁体中量子度量结构的室温灵活操控
- 批准号:
24K16999 - 财政年份:2024
- 资助金额:
$ 11.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Reveal of thermal transport in disordered materials with local order and hierarchical structure by topological and network approaches
通过拓扑和网络方法揭示具有局部有序和分层结构的无序材料中的热传输
- 批准号:
23H01360 - 财政年份:2023
- 资助金额:
$ 11.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theoretical study of novel topological electronic properties arising from the structure and molecular degree of freedom of high-dimensional molecular crystals
高维分子晶体的结构和分子自由度引起的新型拓扑电子特性的理论研究
- 批准号:
23K03322 - 财政年份:2023
- 资助金额:
$ 11.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on topological constraints that characterize the vortex structure of plasmas
表征等离子体涡旋结构的拓扑约束研究
- 批准号:
23KJ0435 - 财政年份:2023
- 资助金额:
$ 11.2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A statistical framework for the analysis of the evolution in shape and topological structure of random objects
用于分析随机物体形状和拓扑结构演化的统计框架
- 批准号:
2311338 - 财政年份:2023
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Topological Complexity and A-infinity structure
拓扑复杂性和A-无穷结构
- 批准号:
23K03093 - 财政年份:2023
- 资助金额:
$ 11.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on topological and geometric structure analysis and visualization of spatio-temporal data
时空数据拓扑几何结构分析与可视化研究
- 批准号:
23K11020 - 财政年份:2023
- 资助金额:
$ 11.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Synthetic design of structure-inspired magnetic topological materials
职业:受结构启发的磁性拓扑材料的综合设计
- 批准号:
2343536 - 财政年份:2023
- 资助金额:
$ 11.2万 - 项目类别:
Continuing Grant
Tailoring and probing electronic/magnetic structure of engineered magnetic topological insulators
工程磁拓扑绝缘体的电子/磁结构的定制和探测
- 批准号:
2219610 - 财政年份:2022
- 资助金额:
$ 11.2万 - 项目类别:
Standard Grant
Investigations of magnetic and topological systems using electronic structure and muon-spin spectroscopy
使用电子结构和μ子自旋光谱研究磁性和拓扑系统
- 批准号:
2748010 - 财政年份:2022
- 资助金额:
$ 11.2万 - 项目类别:
Studentship