Geometry and Topology of String Theory
弦理论的几何和拓扑
基本信息
- 批准号:0401953
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-02-01 至 2006-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0401953Ezra Getzler and Eric ZaslowThis award supports a conference at Northwestern University on the mathematics surrounding the theory of branes, in the context of the Emphasis Year on Geometric and Topological Methods in String Theory at Northwestern University.In addition, the award also supports a series of mini-workshops and seminars tobe held before the conference, which is particularly directed at students and post-docs. This conference will foster a mutually beneficial interaction betweenmathematicians and physicists. In addition, the activities are expected to play a role in advertising potential applications of these emerging methods elsewhere in geometry and topology. Geometric and homotopy-theoretic methods have proved of increasingimportance to the study of string theory and associated areas ofphysics in the last few years: we may mention Fukaya and Kontsevich'sintroduction of A1-categories and the role of manifolds of G2-holonomyas just two examples. The flow of ideas has gone in the other directionas well. For example, string duality has suggested new directions ofresearch on derived categories of algebraic varieties.
DMS-0401953Ezra Getzler和Eric Zaslow在西北大学强调弦理论的几何和拓扑方法的背景下,该奖项支持在西北大学举行的围绕膜理论的数学会议。此外,该奖项还支持在会议之前举行的一系列小型研讨会和研讨会,特别是针对学生和博士后。这次会议将促进数学家和物理学家之间的互利互动。此外,这些活动有望在宣传这些新兴方法在几何学和拓扑学的其他领域的潜在应用方面发挥作用。在过去的几年里,几何和同伦理论方法在弦理论和相关物理领域的研究中被证明是越来越重要的:我们可以提到Fukaya和Kontsevich的A1-范畴的引入和G2-完整流形的作用,这只是两个例子。思想的流动也流向了另一个方向。例如,弦对偶为代数簇派生范畴的研究提供了新的方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ezra Getzler其他文献
Ezra Getzler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ezra Getzler', 18)}}的其他基金
Algebraic structures in topological field theory
拓扑场论中的代数结构
- 批准号:
0906369 - 财政年份:2009
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Topological Field Theory and Integrable Systems
拓扑场论和可积系统
- 批准号:
0505669 - 财政年份:2005
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Topological Field Theory and Integrable Systems
拓扑场论和可积系统
- 批准号:
0072508 - 财政年份:2000
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
The Algebraic Structure of Topological Field Theory
拓扑场论的代数结构
- 批准号:
9704320 - 财政年份:1997
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Physics and Noncommutative Differential Geometry
数学科学:数学物理和非交换微分几何
- 批准号:
9404481 - 财政年份:1994
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Physics and Non- commutative Differential Geometry
数学科学:数学物理和非交换微分几何
- 批准号:
9207078 - 财政年份:1992
- 资助金额:
$ 3万 - 项目类别:
Continuing grant
Mathematical Sciences: Analysis and Geometry of Infinite Dimensional Manifolds
数学科学:无限维流形的分析与几何
- 批准号:
9008233 - 财政年份:1990
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Mathematical Sciences: Analysis on Loop Space
数学科学:循环空间分析
- 批准号:
8700621 - 财政年份:1987
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似海外基金
Study on Contact Homology by String Topology
弦拓扑接触同调研究
- 批准号:
23KJ1238 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The investigation of the non-triviality of string topology in a topological quantum field theory and differentiable stacks
拓扑量子场论和可微堆栈中弦拓扑非平凡性的研究
- 批准号:
21H00982 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on derived string topology developed on Gorenstein spaces
在 Gorenstein 空间上发展的派生弦拓扑研究
- 批准号:
25287008 - 财政年份:2013
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
String Topology, J-holomorphic Curves, and Symplectic Geometry
弦拓扑、J 全纯曲线和辛几何
- 批准号:
EP/J016950/1 - 财政年份:2012
- 资助金额:
$ 3万 - 项目类别:
Research Grant
higher string topology
更高的串拓扑
- 批准号:
358221-2008 - 财政年份:2011
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
- 批准号:
1104555 - 财政年份:2011
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Open string topology and holomorphic curves
开弦拓扑和全纯曲线
- 批准号:
1007260 - 财政年份:2010
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
higher string topology
更高的串拓扑
- 批准号:
358221-2008 - 财政年份:2009
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
- 批准号:
0905809 - 财政年份:2009
- 资助金额:
$ 3万 - 项目类别:
Standard Grant