Differentiable Optimization Techniques for the Recovery of Sharp Features of Solutions to Inverse Problems
恢复反问题解的尖锐特征的可微优化技术
基本信息
- 批准号:9704899
- 负责人:
- 金额:$ 7.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-15 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9704899 Lamm The main goal of this project is to develop local regularization methods for the solution of ill-posed inverse problems such as those arising in applications of inverse heat conduction and image reconstruction. The ideas of local regularization developed by the P.I. naturally lead to a "predictor-corrector" type of solution method. The idea is that a regularized solution is first obtained on a small part of the domain of the solution, after which subsequent correction is applied in order to avoid oversmoothing. This method has been seen to be as effective as standard Tikhonov regularization for Volterra problems, with improved computational performance. In addition, the scheme naturally suggests a "variable regularization" approach in which a functional regularization parameter is used to apply more smoothing in some parts of the domain and less in others. In this project the P.I. plans to continue to develop the existing theory for Volterra problems, and to extend this theory to non-Volterra problems of the type arising in image reconstruction and image deblurring. The design of a theoretically-sound adaptive process of selecting the functional parameter is an essential and difficult part of this project. Inverse problems naturally arise in numerous scientific applications, including biomedical imaging (Magnetic Resonance Imaging and CAT scans), the nondestructive thermal testing and analysis of materials, satellite sensing of remote images, and geophysical applications such as seismic and reservoir engineering. These problems are of considerable challenge to scientists because they often lead to very large computational problems which are extremely sensitive to errors in data. The aim of this project is to develop new methods for the stable and efficient solution of such inverse problems. The successful attainment of this goal would have an important impact on applications such as biotechnology, remote imaging, and materials science.
小行星9704899 这个项目的主要目标是开发局部正则化方法, 不适定的反问题的解决方案,如那些出现在 逆热传导和图像重建的应用。 的 私人侦探提出的地方正规化的想法。自然会导致 “预测-校正”型解法。 这个想法是,一个正则化的 解首先在解的域的一小部分上获得,之后 应用随后的校正以避免过度平滑。 这种方法被认为是有效的标准吉洪诺夫 正则化的沃尔泰拉问题,改进的计算 性能 此外,该计划自然提出了一个“变量 正则化”方法,其中函数正则化参数被 用于在域的某些部分应用更多平滑, 他人 在这个项目中,PI。计划继续发展现有的 理论的沃尔泰拉问题,并将这一理论推广到非沃尔泰拉 在图像重建和图像去模糊中出现的问题。 设计了一个理论上合理的自适应过程, 功能参数是本项目的重点和难点。 逆问题自然出现在许多科学应用中, 包括生物医学成像(磁共振成像和CAT 扫描),材料的无损热检测和分析,卫星 遥感图像和地球物理应用,如地震和 油藏工程 这些问题对 科学家因为他们经常导致非常大的计算问题 对数据中的错误极其敏感。 该项目的目的是 开发新的方法,稳定和有效的解决方案,这样的逆 问题 成功实现这一目标将对 对生物技术、远程成像和 材料科学
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricia Lamm其他文献
Patricia Lamm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patricia Lamm', 18)}}的其他基金
Non-quadratic Penalization in Generalized Local Regularization for Linear and Nonlinear Inverse Problems
线性和非线性反问题广义局部正则化中的非二次惩罚
- 批准号:
1216547 - 财政年份:2012
- 资助金额:
$ 7.86万 - 项目类别:
Continuing Grant
Generalized simple regularization for linear and nonlinear inverse problems
线性和非线性反问题的广义简单正则化
- 批准号:
0915202 - 财政年份:2009
- 资助金额:
$ 7.86万 - 项目类别:
Standard Grant
Inverse Problems and Their Applications: Deterministic and Statistical Methods for Variable Local Regularization
反问题及其应用:变量局部正则化的确定性和统计方法
- 批准号:
0405978 - 财政年份:2004
- 资助金额:
$ 7.86万 - 项目类别:
Continuing Grant
Local Regularization Methods for Ill-Posed Inverse Problems: Fast Algorithms and Adaptive Parameter Selection
不适定反问题的局部正则化方法:快速算法和自适应参数选择
- 批准号:
0104003 - 财政年份:2001
- 资助金额:
$ 7.86万 - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Adaptive Finite Element Methods to Problems in Estimation and Control for Partial Differential Equations
数学科学:自适应有限元方法在偏微分方程估计和控制问题中的应用
- 批准号:
8807162 - 财政年份:1988
- 资助金额:
$ 7.86万 - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Adaptive Gridding Techniques to the Estimation of Variable Coefficients in Distributed Systems
数学科学:自适应网格技术在分布式系统中变量系数估计中的应用
- 批准号:
8601968 - 财政年份:1986
- 资助金额:
$ 7.86万 - 项目类别:
Standard Grant
Mathematical Sciences: Estimation of Discontinuous Coefficients in Distributed Parameter Systems
数学科学:分布参数系统中不连续系数的估计
- 批准号:
8200883 - 财政年份:1982
- 资助金额:
$ 7.86万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of Power Electronics using Artificial Intelligence and Machine Learning Techniques
使用人工智能和机器学习技术优化电力电子
- 批准号:
2890188 - 财政年份:2023
- 资助金额:
$ 7.86万 - 项目类别:
Studentship
Analysis of a Hydrogen Powered Train Performance using Inverse Simulation and Biologically Inspired Optimization Techniques
使用逆向仿真和仿生优化技术分析氢动力列车性能
- 批准号:
2907952 - 财政年份:2023
- 资助金额:
$ 7.86万 - 项目类别:
Studentship
Solving Differentially Private Selection Problems using Nature-inspired Optimization Techniques
使用受自然启发的优化技术解决差分私人选择问题
- 批准号:
558783-2021 - 财政年份:2022
- 资助金额:
$ 7.86万 - 项目类别:
Postgraduate Scholarships - Doctoral
Development and Optimization of Focused Ion Beam Nanotomography Techniques for Characterizing Viral Events at Multiple Organization Levels
聚焦离子束纳米断层扫描技术的开发和优化,用于表征多个组织层面的病毒事件
- 批准号:
569101-2022 - 财政年份:2022
- 资助金额:
$ 7.86万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Novel Modelling and Global Optimization Techniques for the Design and Operation of Microgrids
用于微电网设计和运行的新颖建模和全局优化技术
- 批准号:
546941-2020 - 财政年份:2022
- 资助金额:
$ 7.86万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Optimization of salt morphology and oral perception of salt with CFD and CFD- DEM techniques
利用 CFD 和 CFD-DEM 技术优化盐形态和盐的口腔感知
- 批准号:
2880707 - 财政年份:2022
- 资助金额:
$ 7.86万 - 项目类别:
Studentship
Development of contrast media for postmortem imaging and optimization of the imaging techniques for medical education, and a verification of the educational effects
尸检造影剂的开发和医学教育成像技术的优化及教育效果验证
- 批准号:
22K10395 - 财政年份:2022
- 资助金额:
$ 7.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New optimization techniques to integrate storage and renewable energy in the power network
将存储和可再生能源整合到电网中的新优化技术
- 批准号:
RGPIN-2017-04185 - 财政年份:2022
- 资助金额:
$ 7.86万 - 项目类别:
Discovery Grants Program - Individual
Investigation into the use of Continuous Strain Monitoring Fiber Optic techniques with a view to optimization of Ground Support Design associated with Tunnelling for Civil Infrastructure
研究连续应变监测光纤技术的使用,以优化与民用基础设施隧道相关的地面支撑设计
- 批准号:
RGPIN-2019-05673 - 财政年份:2022
- 资助金额:
$ 7.86万 - 项目类别:
Discovery Grants Program - Individual
Optimization techniques and software architectures for improving scalability of description logic reasoners
用于提高描述逻辑推理器可扩展性的优化技术和软件架构
- 批准号:
RGPIN-2019-05526 - 财政年份:2022
- 资助金额:
$ 7.86万 - 项目类别:
Discovery Grants Program - Individual