Local Regularization Methods for Ill-Posed Inverse Problems: Fast Algorithms and Adaptive Parameter Selection

不适定反问题的局部正则化方法:快速算法和自适应参数选择

基本信息

  • 批准号:
    0104003
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2005-08-31
  • 项目状态:
    已结题

项目摘要

Local regularization methods show great promise for the solution of a number of different classes of inverse problems, often retaining the special structure of the original problem as well as leading to very fast algorithms (especially in the case of Volterra problems). In addition, numerical tests show that local regularization methods can work well to resolve sharp features of solutions without having to rely on nondifferentiable or nonquadratic optimization schemes. To date, the convergence theory for the local regularization of Volterra problems has been limited to only mildly ill-posed inverse problems. In the case of more severely ill-posed problems, there is numerical evidence that certain local methods may suffer from lack of stability and/or convergence. Because of the cost efficiencies of local regularization methods, an important question is therefore whether new variations of these methods can be developed for which stability/convergence can be proven in the general case. The PI proposes to develop two new variations of local regularization methods which show promise in numerical tests and for which there is hope of establishing a general stability/convergence theory. The PI also proposes to develop adaptive schemes for the selection of variable regularization parameters in local regularization methods. Variable parameters are of use in applying more smoothing in some parts of the domain and less in others. In numerical tests adaptive local regularization techniques have been shown to be effective in determining the variable regularization parameter at the same time that local parts of the solution are recovered. Because no convergence theory exists at the present time for such an approach, the PI proposes to study such adaptive schemes and develop a theory which will be useful in making recommendations for adaptive parameter selection methods. The PI also proposes to extend these ideas to nonlinear Volterra problems and to linear non-Volterra problems.Inverse problems occur widely in many applications, including problems of biomedical imaging (CT scans and X-rays), image reconstruction (from satellites or other sources), and geophysical exploration. The Volterra class of inverse problems arises in the determination of the surface temperature of a space vehicle as it re-enters the earth's atmosphere; additionally, Volterra inverse problems appear as models for remote sensing problems. While classical methods exist for for solving such problems, classical methods are often very inefficient and lead to overly expensive solution techniques. A second disadvantage of classical solution methods is readily seen in imaging applications where reconstructed images may have blurred edges and inadequately detailed features. The PI proposes to address both of these difficulties with the development of new solution methods based on the ideas of local regularization. The use of these newer methods can lead to a significant decrease in cost for the solution of a wide class of practical inverse problems, with improved resolution of detailed features of solutions.
局部正则化方法在解决许多不同类型的逆问题方面显示出巨大的希望,通常保留了原始问题的特殊结构,并导致非常快速的算法(特别是在Volterra问题的情况下)。此外,数值试验表明,局部正则化方法可以很好地解决解的尖锐特征,而不必依赖于不可微或非二次优化方案。迄今为止,Volterra问题局部正则化的收敛理论仅限于轻度病态逆问题。对于更严重的病态问题,有数值证据表明某些局部方法可能缺乏稳定性和/或收敛性。由于局部正则化方法的成本效率,因此一个重要的问题是,是否可以开发出这些方法的新变体,从而在一般情况下证明其稳定性/收敛性。PI建议发展两种局部正则化方法的新变体,这两种方法在数值测试中显示出希望,并且有希望建立一般的稳定性/收敛理论。PI还提出了局部正则化方法中变量正则化参数选择的自适应方案。可变参数用于在某些部分应用更多平滑,而在其他部分应用较少平滑。数值试验表明,自适应局部正则化技术可以有效地确定变量正则化参数,同时恢复解的局部部分。由于目前还没有这种方法的收敛理论,PI建议研究这种自适应方案并发展一种理论,这将有助于提出自适应参数选择方法的建议。PI还建议将这些思想扩展到非线性Volterra问题和线性非Volterra问题。逆问题在许多应用中广泛出现,包括生物医学成像(CT扫描和x射线)、图像重建(来自卫星或其他来源)和地球物理勘探的问题。Volterra类反问题出现在确定空间飞行器重新进入地球大气层时的表面温度;此外,Volterra逆问题作为遥感问题的模型出现。虽然存在用于解决此类问题的经典方法,但经典方法通常效率非常低,并且导致过于昂贵的解决方案技术。经典解决方法的第二个缺点很容易在成像应用中看到,其中重建图像可能具有模糊的边缘和不够详细的特征。PI建议通过开发基于局部正则化思想的新解决方法来解决这两个困难。这些新方法的使用可以显著降低求解大量实际反问题的成本,并提高解的详细特征的分辨率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patricia Lamm其他文献

Patricia Lamm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patricia Lamm', 18)}}的其他基金

Non-quadratic Penalization in Generalized Local Regularization for Linear and Nonlinear Inverse Problems
线性和非线性反问题广义局部正则化中的非二次惩罚
  • 批准号:
    1216547
  • 财政年份:
    2012
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Generalized simple regularization for linear and nonlinear inverse problems
线性和非线性反问题的广义简单正则化
  • 批准号:
    0915202
  • 财政年份:
    2009
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Inverse Problems and Their Applications: Deterministic and Statistical Methods for Variable Local Regularization
反问题及其应用:变量局部正则化的确定性和统计方法
  • 批准号:
    0405978
  • 财政年份:
    2004
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Differentiable Optimization Techniques for the Recovery of Sharp Features of Solutions to Inverse Problems
恢复反问题解的尖锐特征的可微优化技术
  • 批准号:
    9704899
  • 财政年份:
    1997
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applications of Adaptive Finite Element Methods to Problems in Estimation and Control for Partial Differential Equations
数学科学:自适应有限元方法在偏微分方程估计和控制问题中的应用
  • 批准号:
    8807162
  • 财政年份:
    1988
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applications of Adaptive Gridding Techniques to the Estimation of Variable Coefficients in Distributed Systems
数学科学:自适应网格技术在分布式系统中变量系数估计中的应用
  • 批准号:
    8601968
  • 财政年份:
    1986
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Estimation of Discontinuous Coefficients in Distributed Parameter Systems
数学科学:分布参数系统中不连续系数的估计
  • 批准号:
    8200883
  • 财政年份:
    1982
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant

相似海外基金

Condensation and Prediction Acceleration for Deep Learning Through Low-rank Regularization and Adaptive Proximal Methods
通过低秩正则化和自适应近端方法进行深度学习的压缩和预测加速
  • 批准号:
    23K19981
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
  • 批准号:
    RGPIN-2018-06134
  • 财政年份:
    2022
  • 资助金额:
    $ 9万
  • 项目类别:
    Discovery Grants Program - Individual
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
  • 批准号:
    RGPIN-2018-06134
  • 财政年份:
    2021
  • 资助金额:
    $ 9万
  • 项目类别:
    Discovery Grants Program - Individual
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
  • 批准号:
    RGPIN-2018-06134
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
    Discovery Grants Program - Individual
Bayesian and Regularization Methods for Spatial Homogeneity Pursuit with Large Datasets
大数据集空间均匀性追求的贝叶斯和正则化方法
  • 批准号:
    1854655
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
  • 批准号:
    RGPIN-2018-06134
  • 财政年份:
    2019
  • 资助金额:
    $ 9万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Error Measures and Source Conditions of Regularization Methods for Inverse Problems (SCIP)
反问题正则化方法的新颖误差测量和来源条件(SCIP)
  • 批准号:
    391100538
  • 财政年份:
    2018
  • 资助金额:
    $ 9万
  • 项目类别:
    Research Grants
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
  • 批准号:
    RGPIN-2018-06134
  • 财政年份:
    2018
  • 资助金额:
    $ 9万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods in Dimensional Regularization Applied to QCD Sum-Rules
应用于 QCD 求和规则的维数正则化数值方法
  • 批准号:
    512738-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 9万
  • 项目类别:
    University Undergraduate Student Research Awards
Regularization methods in Banach spaces for inverse scattering problems
Banach 空间中逆散射问题的正则化方法
  • 批准号:
    247299886
  • 财政年份:
    2013
  • 资助金额:
    $ 9万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了