Generalized simple regularization for linear and nonlinear inverse problems

线性和非线性反问题的广义简单正则化

基本信息

  • 批准号:
    0915202
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The investigator and her colleagues propose to develop a new regularization method for ill-posed inverse problems, a method which is an extension of the ideas of the classical "simplified regularization method" (or "Lavrentiev's method") and the newer method of "local regularization". Both of these methods are known to preserve special structures of the inverse problem and lead to fast numerical solution methods, but they are often limited to specialized operator equations (for example, where the operator is nonnegative self-adjoint or of Volterra type). The idea behind the new method is to approximate the composition of the governing (linear or nonlinear) operator and a localized smoothing/averaging operator by a "generalized simple regularization operator" which is the sum of a third operator and a function times the identity operator. Requiring stricter approximation properties than is usually required for simplified regularization (but which is required for local regularization), there is hope that the resulting method improves upon the numerical results usually obtained for simplified regularization. In addition, because the new method allows for approximation of the original operator by a third operator (as mentioned above), again in contrast to the simplified regularization method, there is the potential for the new method to apply to a number of operators which do not satisfy the restrictive assumptions needed for the classical method and for local regularization. Mathematical inverse problems arise in a wide number of applications, from problems of satellite image reconstruction, biomedical imaging (CT scans, X-rays) and geophysical exploration, to the determination of ozone levels in the atmosphere from measurements taken aboard orbiting spacecraft. The methods proposed by the investigator and her colleagues are applicable to many of these problems. In particular, these ideas play a specific role in the solution of new models for ozone determination under study by the investigator and her mathematical colleagues, as well as proposed systems-level models for attention deficit disorder (ADD) and addiction in adults, models under investigation by the investigator and her clinical colleagues.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。研究者和她的同事们提出了一种新的正则化方法来解决不适定的反问题,这种方法是经典的“简化正则化方法”(或“Lavrentiev方法”)和较新的“局部正则化”方法的思想的扩展。 这两种方法都被认为可以保持反问题的特殊结构,并导致快速的数值求解方法,但它们通常仅限于特定的算子方程(例如,算子是非负自伴的或沃尔泰拉类型的)。 新方法背后的想法是通过“广义简单正则化算子”来近似控制(线性或非线性)算子和局部平滑/平均算子的组合,该算子是第三算子和函数乘以恒等算子的总和。 需要更严格的近似性能比通常所需的简化正则化(但这是需要局部正则化),有希望得到的方法改进后,通常得到的数值结果简化正则化。 此外,由于新方法允许通过第三算子近似原始算子(如上所述),再次与简化正则化方法相反,新方法有可能应用于不满足经典方法和局部正则化所需的限制性假设的许多算子。数学逆问题出现在许多应用中,从卫星图像重建、生物医学成像(CT扫描、X射线)和地球物理勘探问题,到根据轨道航天器上的测量结果确定大气中的臭氧水平。 研究者和她的同事们提出的方法适用于许多这些问题。 特别是,这些想法在研究人员和她的数学同事正在研究的臭氧测定新模型的解决方案中发挥了特定的作用,以及研究人员和她的临床同事正在研究的成人注意力缺陷障碍(ADD)和成瘾的系统级模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patricia Lamm其他文献

Patricia Lamm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patricia Lamm', 18)}}的其他基金

Non-quadratic Penalization in Generalized Local Regularization for Linear and Nonlinear Inverse Problems
线性和非线性反问题广义局部正则化中的非二次惩罚
  • 批准号:
    1216547
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Inverse Problems and Their Applications: Deterministic and Statistical Methods for Variable Local Regularization
反问题及其应用:变量局部正则化的确定性和统计方法
  • 批准号:
    0405978
  • 财政年份:
    2004
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Local Regularization Methods for Ill-Posed Inverse Problems: Fast Algorithms and Adaptive Parameter Selection
不适定反问题的局部正则化方法:快速算法和自适应参数选择
  • 批准号:
    0104003
  • 财政年份:
    2001
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Differentiable Optimization Techniques for the Recovery of Sharp Features of Solutions to Inverse Problems
恢复反问题解的尖锐特征的可微优化技术
  • 批准号:
    9704899
  • 财政年份:
    1997
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applications of Adaptive Finite Element Methods to Problems in Estimation and Control for Partial Differential Equations
数学科学:自适应有限元方法在偏微分方程估计和控制问题中的应用
  • 批准号:
    8807162
  • 财政年份:
    1988
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applications of Adaptive Gridding Techniques to the Estimation of Variable Coefficients in Distributed Systems
数学科学:自适应网格技术在分布式系统中变量系数估计中的应用
  • 批准号:
    8601968
  • 财政年份:
    1986
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Estimation of Discontinuous Coefficients in Distributed Parameter Systems
数学科学:分布参数系统中不连续系数的估计
  • 批准号:
    8200883
  • 财政年份:
    1982
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
泥沙运移数值模拟中的若干数值代数问题研究
  • 批准号:
    11761005
  • 批准年份:
    2017
  • 资助金额:
    33.5 万元
  • 项目类别:
    地区科学基金项目
复杂边界巷道瓦斯运移的网格单交错快速SIMPLE算法研究
  • 批准号:
    11202228
  • 批准年份:
    2012
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

High-Field Solid-State Dynamic Nuclear Polarization with Paramagnetic Systems Beyond Simple Spin 1/2
超越简单自旋的顺磁系统高场固态动态核极化 1/2
  • 批准号:
    2411584
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER SENTINELS: The PCR-free Biosensor for a Fast, Simple, and Sensitive Detection of RNA.
EAGER SENTINELS:无需 PCR 的生物传感器,可快速、简单且灵敏地检测 RNA。
  • 批准号:
    2415037
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Motivic invariants and birational geometry of simple normal crossing degenerations
简单正态交叉退化的动机不变量和双有理几何
  • 批准号:
    EP/Z000955/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
SIMPLE - Scaled up Innovative Motor Production for Lower Environmental impact
简单 - 扩大创新电机生产规模以降低环境影响
  • 批准号:
    10077373
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    BEIS-Funded Programmes
SIMPLE THINGS FESTIVAL - REAL-TIME DIGITAL VENUE
SIMPLE THINGS FESTIVAL - 实时数字场地
  • 批准号:
    10069954
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Collaborative R&D
Development of a new method for evaluating gut microbiota that can be evaluated in a simple, low-cost, and short time
开发一种评估肠道微生物群的新方法,可以在短时间内进行简单、低成本的评估
  • 批准号:
    23K08476
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of simple soil erodibility testing method for evaluating progression potential of internal erosion in levees
开发简单的土壤可蚀性测试方法来评估堤坝内部侵蚀的进展潜力
  • 批准号:
    23H01499
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of platform for non-invasive, rapid, and simple analysis of cytokine secretion from single cells
开发非侵入、快速、简单分析单细胞细胞因子分泌的平台
  • 批准号:
    23H01824
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
STINMALE: Strategic Interactions with Machine-Learning Algorithms: The Role of Simple Beliefs
STINMALE:与机器学习算法的战略交互:简单信念的作用
  • 批准号:
    EP/Y033361/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
Collaborative Research: Promoting Children's Learning About Biological Variability by Leveraging Simple Card Games
合作研究:利用简单的纸牌游戏促进儿童了解生物变异性
  • 批准号:
    2300602
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了