Non-quadratic Penalization in Generalized Local Regularization for Linear and Nonlinear Inverse Problems
线性和非线性反问题广义局部正则化中的非二次惩罚
基本信息
- 批准号:1216547
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Variational methods with non-quadratic penalty terms (such as those associated with total variation or sparsity constraints) are extremely effective solution methods for the resolution of sharp features of nonsmooth solutions to applied inverse problems. Unfortunately, such globally-defined methods are often associated with large computational costs, a situation made even worse by the scale of the underlying problem (e.g., large imaging data sets). Using their expertise in methods of generalized local regularization, the investigator and her colleagues develop localized non-quadratic regularization methods for ill-posed inverse problems as a way to reduce computational costs while still maintaining the sharp resolution of solutions. Applications of these new methods include problems of image deblurring, nonlinear autoconvolution, blind deconvolution, fractional integration/differentiation, and inverse and backward heat conduction. The methods developed by the investigator and her colleagues lead to faster, less computationally-intensive techniques for the accurate reconstruction of pictures in a wide number of applications, from satellite image gathering, biomedical imaging (CT scans, PET scans, etc.), to geophysical exploration. The improved methods enable the analysis of more data in a shorter amount of time, and with less overall expense. In addition to imaging applications, these new methods are also applicable to the problem of determining hidden cracks and weaknesses in structures and materials, and the detection of ozone levels in the atmostphere, as well as to problems arising in the analysis of nano-structures.
具有非二次惩罚项的变分方法(例如与全变分或稀疏约束相关的变分方法)是解决应用反问题的非光滑解的尖锐特征的非常有效的求解方法。 不幸的是,这种全局定义的方法通常与大的计算成本相关联,这种情况由于潜在问题的规模(例如,大的成像数据集)。 利用他们在广义局部正则化方法方面的专业知识,研究人员和她的同事为不适定的反问题开发了局部化非二次正则化方法,作为一种降低计算成本的方法,同时仍然保持解决方案的清晰度。 这些新方法的应用包括图像去模糊、非线性自卷积、盲解卷积、分数阶积分/微分以及逆热传导和反向热传导等问题。研究人员和她的同事开发的方法导致更快,更少的计算密集型技术,用于在广泛的应用中准确重建图片,从卫星图像收集,生物医学成像(CT扫描,PET扫描等),地球物理勘探。 改进的方法能够在更短的时间内分析更多的数据,并且总体费用更低。 除了成像应用之外,这些新方法还适用于确定结构和材料中隐藏的裂缝和弱点的问题,以及大气中臭氧水平的检测,以及纳米结构分析中出现的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricia Lamm其他文献
Patricia Lamm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patricia Lamm', 18)}}的其他基金
Generalized simple regularization for linear and nonlinear inverse problems
线性和非线性反问题的广义简单正则化
- 批准号:
0915202 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Inverse Problems and Their Applications: Deterministic and Statistical Methods for Variable Local Regularization
反问题及其应用:变量局部正则化的确定性和统计方法
- 批准号:
0405978 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Local Regularization Methods for Ill-Posed Inverse Problems: Fast Algorithms and Adaptive Parameter Selection
不适定反问题的局部正则化方法:快速算法和自适应参数选择
- 批准号:
0104003 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Differentiable Optimization Techniques for the Recovery of Sharp Features of Solutions to Inverse Problems
恢复反问题解的尖锐特征的可微优化技术
- 批准号:
9704899 - 财政年份:1997
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Adaptive Finite Element Methods to Problems in Estimation and Control for Partial Differential Equations
数学科学:自适应有限元方法在偏微分方程估计和控制问题中的应用
- 批准号:
8807162 - 财政年份:1988
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Adaptive Gridding Techniques to the Estimation of Variable Coefficients in Distributed Systems
数学科学:自适应网格技术在分布式系统中变量系数估计中的应用
- 批准号:
8601968 - 财政年份:1986
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Sciences: Estimation of Discontinuous Coefficients in Distributed Parameter Systems
数学科学:分布参数系统中不连续系数的估计
- 批准号:
8200883 - 财政年份:1982
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
Teichmüller理论与动力系统
- 批准号:11026124
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
解一类结构型变分不等式的数值算法
- 批准号:10701055
- 批准年份:2007
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Principal ideals of quadratic fields
二次域的主理想
- 批准号:
574326-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
Singular moduli for real quadratic fields
实二次场的奇异模
- 批准号:
569500-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Postgraduate Scholarships - Doctoral
Investigations in the algebraic and geometric theory of quadratic and hermitian forms
二次和埃尔米特形式的代数和几何理论研究
- 批准号:
RGPIN-2019-05607 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for hard quadratic combinatorial optimization problems and linkages with quantum bridge analytics
硬二次组合优化问题的算法以及与量子桥分析的联系
- 批准号:
RGPIN-2021-03190 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Developing novel and efficient binary quadratic optimization methodologies
开发新颖高效的二元二次优化方法
- 批准号:
RGPIN-2021-03307 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Developing novel and efficient binary quadratic optimization methodologies
开发新颖高效的二元二次优化方法
- 批准号:
DGECR-2021-00263 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Launch Supplement
Algorithms for hard quadratic combinatorial optimization problems and linkages with quantum bridge analytics
硬二次组合优化问题的算法以及与量子桥分析的联系
- 批准号:
RGPIN-2021-03190 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
CIF: Small: Secure and Fast Federated Low-Rank Recovery from Few Column-wise Linear, or Quadratic, Projections
CIF:小型:通过少量列线性或二次投影进行安全快速的联合低秩恢复
- 批准号:
2115200 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Modularity of elliptic curves over imaginary quadratic fields
虚二次域上椭圆曲线的模性
- 批准号:
565670-2021 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Investigations in the algebraic and geometric theory of quadratic and hermitian forms
二次和埃尔米特形式的代数和几何理论研究
- 批准号:
RGPIN-2019-05607 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual