Inverse Problems and Their Applications: Deterministic and Statistical Methods for Variable Local Regularization

反问题及其应用:变量局部正则化的确定性和统计方法

基本信息

  • 批准号:
    0405978
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

Abstract: 0405978 P Lamm, Michigan State UniversityInverse Problems and their Applications: Deterministic and Statistical Methods for Variable Local Regularization In this project the principal investigator plans to developtheoretically-sound methods for the practical selection of variableregularization parameters as part of local regularization methods forinverse problems. The PI first proposes to undertake a deterministicapproach to the problem of variable parameter selection via thecoordination of local discrepancy principles and under the assumptionthat some local information about data error-level is available.Parts of this work will entail wavelet-based approximations used inconjunction with the local regularization ideas. In addition, the PIplans to study a statistical parameter estimation idea currently beingtested by researchers working on the problem of detecting ozone levelsin the atmosphere, and to give these ideas the theoretical basis theyare currently lacking. There is hope that powerful new methods forthe selection of variable local regularization parameters, methods notrequiring information about local noise-levels in the data, willemerge from this work. As part of the project the PI plans to applythis new class of methods to the ozone detection problem.Inverse problems occur widely in many applications, including problemsof biomedical imaging (CT scans and X-rays), image reconstruction(from satellites or other sources), the detection of ozone levels inthe atmosphere, and geophysical exploration. While classical methodsexist for for solving such problems, classical methods are often veryinefficient and lead to overly expensive solution techniques. Asecond disadvantage of classical solution methods can be seen inimaging applications where reconstructed images may have blurred edgesand inadequately detailed features. The PI has been working toaddress these difficulties with the development of new solutionmethods based on the ideas of local regularization. The use of thesenewer methods can lead to a significant decrease in cost for thesolution of a wide class of practical inverse problems, with improvedresolution of detailed features of solutions.
摘要:0405978 P Lamm,密歇根州立大学逆问题及其应用:变量局部正则化的确定性和统计方法在这个项目中,主要研究者计划开发理论上合理的方法,用于实际选择变量正则化参数,作为逆问题局部正则化方法的一部分。 PI首先提出通过局部差异原则的协调,并在假设有关数据误差水平的局部信息可用的情况下,对可变参数选择问题进行确定性处理,部分工作将涉及结合局部正则化思想使用的基于小波的近似。此外,PI计划研究一个统计参数估计的想法,目前正在测试的研究人员在探测大气中臭氧水平的问题,并给予这些想法的理论基础,他们目前缺乏。 有希望的是,强大的新方法选择可变的局部正则化参数,方法不需要信息的局部噪声水平的数据,将出现从这项工作。 作为该项目的一部分,PI计划将这类新方法应用于臭氧检测问题。逆问题广泛存在于许多应用中,包括生物医学成像(CT扫描和X射线)问题、图像重建(来自卫星或其他来源)、大气中臭氧水平的检测以及地球物理勘探。 虽然经典的方法存在解决这些问题,经典的方法往往是非常低效的,并导致过于昂贵的解决方案的技术。 第二个缺点的经典解决方案的方法可以看到在成像应用中,重建图像可能有模糊的边缘和不够详细的功能。 PI一直致力于解决这些困难,开发了基于局部正则化思想的新解决方案。这些新方法的使用可以显著降低求解一类实际反问题的成本,并提高解的细节特征的分辨率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patricia Lamm其他文献

Patricia Lamm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patricia Lamm', 18)}}的其他基金

Non-quadratic Penalization in Generalized Local Regularization for Linear and Nonlinear Inverse Problems
线性和非线性反问题广义局部正则化中的非二次惩罚
  • 批准号:
    1216547
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Generalized simple regularization for linear and nonlinear inverse problems
线性和非线性反问题的广义简单正则化
  • 批准号:
    0915202
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Local Regularization Methods for Ill-Posed Inverse Problems: Fast Algorithms and Adaptive Parameter Selection
不适定反问题的局部正则化方法:快速算法和自适应参数选择
  • 批准号:
    0104003
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Differentiable Optimization Techniques for the Recovery of Sharp Features of Solutions to Inverse Problems
恢复反问题解的尖锐特征的可微优化技术
  • 批准号:
    9704899
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applications of Adaptive Finite Element Methods to Problems in Estimation and Control for Partial Differential Equations
数学科学:自适应有限元方法在偏微分方程估计和控制问题中的应用
  • 批准号:
    8807162
  • 财政年份:
    1988
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applications of Adaptive Gridding Techniques to the Estimation of Variable Coefficients in Distributed Systems
数学科学:自适应网格技术在分布式系统中变量系数估计中的应用
  • 批准号:
    8601968
  • 财政年份:
    1986
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Estimation of Discontinuous Coefficients in Distributed Parameter Systems
数学科学:分布参数系统中不连续系数的估计
  • 批准号:
    8200883
  • 财政年份:
    1982
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic expansions of ODE type solutions and their related inverse problems
ODE型解的渐近展开及其相关反问题
  • 批准号:
    20F20327
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigating Fractional Diffusion Equations and their Inverse Problems
研究分数扩散方程及其反问题
  • 批准号:
    553291-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Inverse Problems and Their Applications
反问题及其应用
  • 批准号:
    1358648
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Iterative Methods for Least Squares Problems and their Application to Inverse Problems
最小二乘问题的迭代方法及其在反问题中的应用
  • 批准号:
    24560082
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inverse Problems and Their Applications
反问题及其应用
  • 批准号:
    1200898
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Inverse Problems and Their Applications
反问题及其应用
  • 批准号:
    1256802
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Studies on direct reconstruction methods and their numerical implementations for the solution of some inverse problems for partial differential equations
偏微分方程部分反问题求解的直接重构方法及其数值实现研究
  • 批准号:
    23540173
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了