Variational Problems in Low Dimensional Geometry and Topology
低维几何和拓扑中的变分问题
基本信息
- 批准号:9704949
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9704949 Kusner This project deals with various geometric variational problems. One focus of the project is geometric moduli problems, especially for complete constant mean curvature surfaces and conformally flat constant scalar curvature metrics. Tools from mechanics and symplectic geometry - and in the case of surfaces, Teichmuller theoretic methods and representations involving spinors and quaternionic forms - is to be used to understand the structure of these moduli spaces. Geometric variational problems include a variety of problems where finding extremal or optimal objects amongst families of objects all satisfying certain boundary or initial conditions. For example, a minimal surface spanning a given boundary minimizes the surface area amongst all surfaces spanning the same boundary. Minimal surfaces, and more generally, constant mean curvature surfaces, can be used to model certain condensed matter - this is based on the observation that when two homogeneous media meet their interface forms a constant mean curvature surface.
9704949 Kusner这个项目处理各种几何变分问题。该项目的一个重点是几何模问题,特别是对于完全常数平均曲率曲面和共形平坦常数标量曲率度量。来自力学和辛几何的工具——在曲面的情况下,涉及旋量和四元数形式的Teichmuller理论方法和表示——将被用来理解这些模空间的结构。几何变分问题包括在满足一定边界或初始条件的目标族中寻找极值或最优目标的各种问题。例如,跨越给定边界的最小曲面将跨越同一边界的所有曲面的表面积最小化。最小表面,更一般地说,恒定平均曲率表面,可以用来模拟某些凝聚态物质-这是基于观察到,当两种均匀介质相遇时,它们的界面形成一个恒定平均曲率表面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Kusner其他文献
Robert Kusner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Kusner', 18)}}的其他基金
Variational Problems in Low Dimensional Geometry and Topology
低维几何和拓扑中的变分问题
- 批准号:
0076085 - 财政年份:2000
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Variational Problems in Geometry and Topology
数学科学:几何和拓扑中的变分问题
- 批准号:
9404278 - 财政年份:1994
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9107907 - 财政年份:1991
- 资助金额:
$ 7.5万 - 项目类别:
Fellowship Award
Mathematical Sciences: The Global Geometry of Extremal Surfaces
数学科学:极值曲面的整体几何
- 批准号:
8908064 - 财政年份:1989
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Development of Female Athlete Triad-like low bone strength model rats to cause the health problems of female athletes
女运动员三联征低骨强度模型大鼠的研制引起女运动员的健康问题
- 批准号:
23K10613 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Re-examination of classical problems in low-dimensional topology from higher invariants
从更高的不变量重新审视低维拓扑中的经典问题
- 批准号:
23K03110 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Designing a digital, parent-led cognitive behavioural therapy-based intervention for young people with mental health problems in low-income settings
为低收入环境中存在心理健康问题的年轻人设计一种数字化、家长主导的认知行为疗法干预措施
- 批准号:
2884012 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Studentship
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324369 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324368 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Machine learning of high-dimensional life dynamics time series for reduction to low-dimensional systems and its application to controlling problems
用于还原为低维系统的高维生命动态时间序列的机器学习及其在控制问题中的应用
- 批准号:
22K11941 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A dynamic general equilibrium analysis of macroeconomic problems in an ultra-low interest rate environment
超低利率环境下宏观经济问题的动态一般均衡分析
- 批准号:
21K01577 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Implementing a Digital Adolescent Behavioral Health Screening, Literacy, and Low-Intensity Intervention for Common Adolescent Mental Health Problems in Kenya
针对肯尼亚常见青少年心理健康问题实施数字化青少年行为健康筛查、扫盲和低强度干预
- 批准号:
10267975 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别: