Statistical Methods for Models with Comstraints and Incomplete Data

具有约束和不完整数据的模型的统计方法

基本信息

  • 批准号:
    9704983
  • 负责人:
  • 金额:
    $ 18.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-15 至 2000-06-30
  • 项目状态:
    已结题

项目摘要

NSF: DMS 9704983 Statistical Methods for Models with Constraints and Incomplete Data Y.Vardi and C-H Zhang Rutgers University ABSTRACT Statistical methods and inference tools for problems with incomplete - data and constrained -parameters will be developed. There are four main research topics: The first topic covers regression and multisample data under selection bias that depends on the response variable. A number of semiparametric models (parametric weight functions, nonparametric base distribution) are studied and maximum likelihood procedures with related inference tools are developed. Applications to HIV clinical trial are proposed. The second topic focuses on estimation in multinomial models subject to upper and lower bound constraints on the cell probabilities. This method is incorporated into an EM algorithm for image reconstruction in discrete tomography . The third topic extends current semiparametric regression models to truncation-censoring cases and heteroscedastic regression models with censored data. The fourth topic centers on inference for right-censored random (growth) curves, where the censoring mechanism depends on the progression of the curve. This is informative, nonignorable, censoring and it poses methodological challenges for the problems of comparing two groups of curves (treatment and control). Methodolgy based on U-type statistics is developed, and a semiparametric accelerated growth regression model is introduced to model relationship between the curves and their corresponding covariates. The research centers on statistical methods for problems in which data collection is impaired by sampling bias, missing observations, and models with partial information on the parameters. The developed methods contributes directly to certain scientific areas considered of strategic national importance. The research on estimating cell-probabilities in constrained multinomial models is incorporated in an algo rithm for image reconstruction of binary images in electron transmission tomography; an important high-tech technology, still in research stages, for estimating the atomic structure of a crystal layer by taking projection measurements. This is important in material studies and in manufacturing. The research on semiparametric selection-bias models relates to applications in biotechnology, as it is developed in preparation for planned HIV vaccine trials. The goal here, is to have a methodology in place for analyzing HIV-1 sequence data arising from forthcoming vaccine trials.
9704983带约束和不完全数据模型的统计方法。罗格斯大学,Y.Vardi,张振华,抽象统计方法和推理工具将被开发。主要研究内容有四个:第一个主题涉及选择偏倚下的回归和多样本数据,偏倚取决于响应变量。研究了几种半参数模型(参数权函数、非参数基分布),开发了极大似然程序和相关的推理工具。提出了在HIV临床试验中的应用。第二个主题集中在单元概率的上下限约束下的多项式模型中的估计。将该方法应用于离散层析成像中的EM图像重建算法。第三个主题将现有的半参数回归模型推广到截尾截尾情形和截尾数据下的异方差回归模型。第四个主题集中于右删失随机(增长)曲线的推断,其中的审查机制取决于曲线的级数。这是一种信息性的、不可忽视的审查,它对比较两组曲线(处理和对照)的问题提出了方法学上的挑战。发展了基于U型统计的方法,并引入半参数加速增长回归模型来模拟曲线与其对应的协变量之间的关系。研究集中在针对数据收集因抽样偏差、遗漏观测和带有部分参数信息的模型而受到影响的问题的统计方法上。所开发的方法对被认为具有国家战略意义的某些科学领域有直接贡献。在约束多项式模型中估计细胞概率的研究被纳入电子透射层析成像中的二值图像重建算法中;这是一项重要的高科技技术,通过投影测量来估计晶层的原子结构,但仍处于研究阶段。这在材料研究和制造中都很重要。半参数选择-偏向模型的研究涉及到生物技术中的应用,因为它是为计划中的HIV疫苗试验而发展的。这里的目标是建立一种方法来分析来自即将到来的疫苗试验的HIV-1序列数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yehuda Vardi其他文献

Positron Emission Tomography and Random Coefficients Regression

Yehuda Vardi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yehuda Vardi', 18)}}的其他基金

Statistical Methods for Some Applied Problems
一些应用问题的统计方法
  • 批准号:
    0102529
  • 财政年份:
    2001
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Statistical Methods for Incomplete and Biased Data with New Applications
数学科学:不完整和有偏差数据的统计方法及其新应用
  • 批准号:
    9123166
  • 财政年份:
    1992
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Statistical Models and Methods for Incomplete and Biased Data
数学科学:不完整和有偏差数据的统计模型和方法
  • 批准号:
    8802893
  • 财政年份:
    1988
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
  • 批准号:
    2310450
  • 财政年份:
    2023
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Standard Grant
CAREER: Statistical Models and Parallel-computing Methods for Analyzing Sparse and Large Single-cell Chromatin Interaction Datasets
职业:用于分析稀疏和大型单细胞染色质相互作用数据集的统计模型和并行计算方法
  • 批准号:
    2239350
  • 财政年份:
    2023
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Continuing Grant
Statistical models and methods for survival and longitudinal data in clinical and observational studies
临床和观察研究中生存和纵向数据的统计模型和方法
  • 批准号:
    RGPIN-2018-05197
  • 财政年份:
    2022
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Statistical and Computational Methods for Genetics and Dynamical Models
遗传学和动力学模型的高效统计和计算方法
  • 批准号:
    RGPIN-2019-06131
  • 财政年份:
    2022
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Discovery Grants Program - Individual
Computational and statistical methods for loss models
损失模型的计算和统计方法
  • 批准号:
    RGPIN-2017-06643
  • 财政年份:
    2022
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Discovery Grants Program - Individual
Models and methods of statistical dependence with applications in clinical trials and risk management
统计依赖性模型和方法及其在临床试验和风险管理中的应用
  • 批准号:
    RGPIN-2018-05362
  • 财政年份:
    2022
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2022
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Discovery Grants Program - Individual
Computational and statistical methods for loss models
损失模型的计算和统计方法
  • 批准号:
    RGPIN-2017-06643
  • 财政年份:
    2021
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2021
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Discovery Grants Program - Individual
Models and methods of statistical dependence with applications in clinical trials and risk management
统计依赖性模型和方法及其在临床试验和风险管理中的应用
  • 批准号:
    RGPIN-2018-05362
  • 财政年份:
    2021
  • 资助金额:
    $ 18.11万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了