Structure of Local Minimizers in Superconductivity and Models for Phase Transitions
超导局部极小化器的结构和相变模型
基本信息
- 批准号:9705774
- 负责人:
- 金额:$ 7.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9705774 Sternberg In this proposal, the principal investigator decribes a research program in nonlinear partial differential equations and the calculus of variations. The research topics come from three areas: the Ginzburg-Landau model for superconductivity, the Cahn-Hilliard model for phase transitions, and the structure of stable solutions to volume-constrained least area problems. A common goal throughout the proposal is to study the existence, disappearance, and structure of local minimizers to problems arising in continuum mechanics when relevant parameters are altered. In the work centered on superconductivity, the P.I. will focus on problems concerning the complex relationship between the size of an applied magnetic field and the behavior of vortices which appear within the superconducting sample. The projects related to phase transitions concern the structure of transition layers bridging two (or more) phases within the context of the Cahn-Hilliard theory of phase transitions. This work is inextricably linked to the study of volume-constrained least area problems. These geometry problems are quite subtle, and their resolution should shed light on the structure of phase transitions in the Cahn-Hilliard setting as well. This proposal concerns research projects related to the study of superconductors and to the study of phase transitions in fluids or alloys. In the production of superconductors, a major concern is the emergence of vortices which are little "defects" in the sample leading to a loss of perfect conductivity. In this proposal, the P.I. will use the so-called Ginzburg-Landau theory as a model for the superconductor in order to investigate the emergence, disappearance, and placement of these "defects" when the sample is subjected to a magnetic field. In the research devoted to phase transitions, the P.I. will study mathematical models for binary alloys (Cahn-Hilliard theory) and for two-fluid systems (van der Waals the ory). The goal is to understand the possible shape of the boundaries between different phases of a medium. Particular attention will be paid to the effect of the boundary of the container holding the medium on the structure of these so-called transition layers. These studies are related to questions about the possible shape of bubbles confined to a container. Since these bubbles tend to hug the wall of the enclosing container, one wants to understand how the specific shape of the container will affect the structure of the stable bubble.
9705774 斯滕贝格 在这个建议中,主要研究者描述了一个非线性偏微分方程和变分法的研究计划。研究课题来自三个方面: 金兹堡-朗道超导模型 相变以及体积约束最小面积问题稳定解的结构。一个共同的目标,在整个建议是研究的存在,消失,和结构的局部极小化所产生的问题,在连续介质力学时,相关参数被改变。在以 超导性,P.I.将集中在有关问题的复杂关系的大小之间的一个应用磁场 以及超导体内部出现的涡流的行为 sample. 与阶段过渡有关的项目涉及 过渡层的结构桥接内部的两个(或更多个)相 Cahn-Hilliard相变理论这 工作是密不可分的研究体积约束最小 地区问题。这些几何问题是相当微妙的,他们的决议应该阐明的结构相变在卡恩-希利亚德设置以及。 这项建议涉及与超导体研究和流体相变研究有关的研究项目, 合金.在超导体的生产中,一个主要的问题是 涡流的出现是样品中的小“缺陷”,导致完美导电性的损失。在这份提案中,P.I.将使用所谓的Ginzburg-Landau理论作为超导体的模型,以研究当样品受到磁场时这些“缺陷”的出现,消失和位置。 在致力于相变的研究中,PI将研究二元合金(卡恩-希利亚德理论)和双流体系统(货车德瓦尔斯理论)的数学模型。目标是了解不同阶段之间的边界的可能形状, 介质将特别注意的影响, 在这些所谓的过渡层的结构上保持介质的容器的边界。这些研究涉及到的问题是关于局限于容器中的气泡的可能形状。由于这些气泡倾向于拥抱封闭容器的壁,人们希望了解容器的特定形状将如何影响稳定气泡的结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Sternberg其他文献
Correction to: A Model Problem for Nematic-Isotropic Transitions with Highly Disparate Elastic Constants
- DOI:
10.1007/s00205-023-01879-4 - 发表时间:
2023-05-03 - 期刊:
- 影响因子:2.400
- 作者:
Dmitry Golovaty;Michael R. Novack;Peter Sternberg;Raghavendra Venkatraman - 通讯作者:
Raghavendra Venkatraman
Existence, uniqueness, and regularity for functions of least gradient.
最小梯度函数的存在性、唯一性和正则性。
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Peter Sternberg;Graham Williams;W. Ziemer - 通讯作者:
W. Ziemer
A Degenerate Isoperimetric Problem in the Plane
- DOI:
10.1007/s12220-017-9902-4 - 发表时间:
2017-08-03 - 期刊:
- 影响因子:1.500
- 作者:
Jiri Dadok;Peter Sternberg - 通讯作者:
Peter Sternberg
Peter Sternberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Sternberg', 18)}}的其他基金
Conference on Emerging Trends in Variational Models of Materials
材料变分模型新兴趋势会议
- 批准号:
2232136 - 财政年份:2022
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Collaborative Research: Morphogenesis of First-Order Phase Transitions in Polar and Apolar Nematic Liquid Crystals
合作研究:极性和非极性向列液晶中一级相变的形态发生
- 批准号:
2106516 - 财政年份:2021
- 资助金额:
$ 7.88万 - 项目类别:
Continuing Grant
Vortices, phase boundaries and defects arising in nonlinear PDE and variational models
非线性偏微分方程和变分模型中出现的涡流、相界和缺陷
- 批准号:
1362879 - 财政年份:2014
- 资助金额:
$ 7.88万 - 项目类别:
Continuing Grant
Analysis of singular structures in elliptic and parabolic PDE with curvature effects
具有曲率效应的椭圆和抛物线偏微分方程中的奇异结构分析
- 批准号:
1101290 - 财政年份:2011
- 资助金额:
$ 7.88万 - 项目类别:
Continuing Grant
Behavior of Solutions to Time-Dependant and Inhomogenous Ginzburg-Landau Models
瞬态和非齐次 Ginzburg-Landau 模型解的行为
- 批准号:
0654122 - 财政年份:2007
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Workshop on Singularities in Partial Differential Equations and the Calculus of Variations
偏微分方程奇异性和变分法研讨会
- 批准号:
0602692 - 财政年份:2006
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Singular Structures Arising from Variational Problems in Materials Science
材料科学中变分问题产生的奇异结构
- 批准号:
0401328 - 财政年份:2004
- 资助金额:
$ 7.88万 - 项目类别:
Continuing Grant
Variational Problems Arising in Models for Superconductivity, Thin Film Blistering and Micromagnetics
超导、薄膜起泡和微磁学模型中出现的变分问题
- 批准号:
0100540 - 财政年份:2001
- 资助金额:
$ 7.88万 - 项目类别:
Continuing Grant
U.S.-Chile Cooperative Research: Onset of Superconductivity in Large Magnetic Fields
美国-智利合作研究:大磁场中超导性的开始
- 批准号:
0071882 - 财政年份:2000
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Evolutions and the Calculusof Variations
数学科学:非线性演化和变分演算
- 批准号:
9322617 - 财政年份:1994
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
相似国自然基金
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
- 批准号:11872210
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
miRNA-140调控软骨Local RAS对骨关节炎中骨-软骨复合单元血管增生和交互作用影响的研究
- 批准号:81601936
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
I-Corps: Translation Potential of Rapid In-situ Forming Gel for Local Gene Delivery
I-Corps:快速原位形成凝胶用于局部基因传递的转化潜力
- 批准号:
2410778 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
HAIRCYCLE: a pilot study to explore and test regenerative, local, bio-based and circular models for human hair waste
HAIRCYCLE:一项试点研究,旨在探索和测试人类毛发废物的再生、局部、生物基和循环模型
- 批准号:
AH/Z50550X/1 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Research Grant
Drivers of Local Prosperity Differences: People, Firms and Places
地方繁荣差异的驱动因素:人、企业和地方
- 批准号:
ES/Z000130/1 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Spatial and Geological Mapping in Local Communities
博士论文研究:当地社区的空间和地质测绘
- 批准号:
2342887 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Partnering with local knowledge systems to impact river management
与当地知识系统合作影响河流管理
- 批准号:
DE240101058 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Discovery Early Career Researcher Award
Stirling Local Policy Innovation Partnership
斯特灵地方政策创新伙伴关系
- 批准号:
ES/Y502364/1 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Research Grant
Tackling planning delays and housing under-supply across England: Can inter-municipal cooperation between local planning authorities help?
解决英格兰各地的规划延误和住房供应不足问题:地方规划当局之间的跨市合作能提供帮助吗?
- 批准号:
ES/Z502510/1 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Research Grant
VIETPULSE - Vietnam Intelligent Energy Trading Platform for Upscaling Local energy Storage and EV
VIETPULSE - 越南智能能源交易平台,用于升级本地储能和电动汽车
- 批准号:
10078878 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Collaborative R&D
Local Food System実践を通じたアニマルウェルフェア普及メカニズムの探究
通过本土食品体系实践探索动物福利传播机制
- 批准号:
24K17976 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
PFI-TT: Local Sensing on Automated Vehicles
PFI-TT:自动驾驶车辆的本地传感
- 批准号:
2329820 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Continuing Grant