Behavior of Solutions to Time-Dependant and Inhomogenous Ginzburg-Landau Models
瞬态和非齐次 Ginzburg-Landau 模型解的行为
基本信息
- 批准号:0654122
- 负责人:
- 金额:$ 10.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Behavior of Solutions to Time-dependent and InhomogeneousGinzburg-Landau ModelsAbstract of Proposed ResearchPeter J Sternberg This project is to conduct a rigorous investigation of some equations that have been proposed as models for superconductors. In particular, we shall study certain solutions of the time-dependent Ginzburg-Landau equations with applied currents and investigate the stability of certain steady states, the possible formation of "non-topological" vortices and the co-existence of normal and supercurrents. Superconductivity is an important topic whose mathematical modeling is poorly developed. Under this proposal, and in collaboration with some colleagues and students, we aim to further develop the mathematical analysis of some of the accepted equations and explain the observed phenomena.
时间相关和非齐次金-朗道模型解的行为拟议研究摘要Peter J斯滕贝格该项目是对已被提议作为超导体模型的一些方程进行严格的研究。特别是,我们将研究与时间相关的金-朗道方程与应用电流的某些解决方案,并调查某些稳定状态的稳定性,可能形成的“非拓扑”涡流和正常和超导共存。超导是一个重要的课题,但其数学模型还很薄弱。根据这一建议,并与一些同事和学生合作,我们的目标是进一步发展一些公认的方程的数学分析,并解释观察到的现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Sternberg其他文献
Correction to: A Model Problem for Nematic-Isotropic Transitions with Highly Disparate Elastic Constants
- DOI:
10.1007/s00205-023-01879-4 - 发表时间:
2023-05-03 - 期刊:
- 影响因子:2.400
- 作者:
Dmitry Golovaty;Michael R. Novack;Peter Sternberg;Raghavendra Venkatraman - 通讯作者:
Raghavendra Venkatraman
Existence, uniqueness, and regularity for functions of least gradient.
最小梯度函数的存在性、唯一性和正则性。
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Peter Sternberg;Graham Williams;W. Ziemer - 通讯作者:
W. Ziemer
A Degenerate Isoperimetric Problem in the Plane
- DOI:
10.1007/s12220-017-9902-4 - 发表时间:
2017-08-03 - 期刊:
- 影响因子:1.500
- 作者:
Jiri Dadok;Peter Sternberg - 通讯作者:
Peter Sternberg
Peter Sternberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Sternberg', 18)}}的其他基金
Conference on Emerging Trends in Variational Models of Materials
材料变分模型新兴趋势会议
- 批准号:
2232136 - 财政年份:2022
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
Collaborative Research: Morphogenesis of First-Order Phase Transitions in Polar and Apolar Nematic Liquid Crystals
合作研究:极性和非极性向列液晶中一级相变的形态发生
- 批准号:
2106516 - 财政年份:2021
- 资助金额:
$ 10.92万 - 项目类别:
Continuing Grant
Vortices, phase boundaries and defects arising in nonlinear PDE and variational models
非线性偏微分方程和变分模型中出现的涡流、相界和缺陷
- 批准号:
1362879 - 财政年份:2014
- 资助金额:
$ 10.92万 - 项目类别:
Continuing Grant
Analysis of singular structures in elliptic and parabolic PDE with curvature effects
具有曲率效应的椭圆和抛物线偏微分方程中的奇异结构分析
- 批准号:
1101290 - 财政年份:2011
- 资助金额:
$ 10.92万 - 项目类别:
Continuing Grant
Workshop on Singularities in Partial Differential Equations and the Calculus of Variations
偏微分方程奇异性和变分法研讨会
- 批准号:
0602692 - 财政年份:2006
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
Singular Structures Arising from Variational Problems in Materials Science
材料科学中变分问题产生的奇异结构
- 批准号:
0401328 - 财政年份:2004
- 资助金额:
$ 10.92万 - 项目类别:
Continuing Grant
Variational Problems Arising in Models for Superconductivity, Thin Film Blistering and Micromagnetics
超导、薄膜起泡和微磁学模型中出现的变分问题
- 批准号:
0100540 - 财政年份:2001
- 资助金额:
$ 10.92万 - 项目类别:
Continuing Grant
U.S.-Chile Cooperative Research: Onset of Superconductivity in Large Magnetic Fields
美国-智利合作研究:大磁场中超导性的开始
- 批准号:
0071882 - 财政年份:2000
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
Structure of Local Minimizers in Superconductivity and Models for Phase Transitions
超导局部极小化器的结构和相变模型
- 批准号:
9705774 - 财政年份:1997
- 资助金额:
$ 10.92万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Evolutions and the Calculusof Variations
数学科学:非线性演化和变分演算
- 批准号:
9322617 - 财政年份:1994
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
相似海外基金
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
- 批准号:
22KJ2801 - 财政年份:2023
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Asymptotic behavior of global in time solutions to the viscous conservation laws
粘性守恒定律全局时间解的渐近行为
- 批准号:
22K03371 - 财政年份:2022
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
- 批准号:
18K03365 - 财政年份:2018
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Long time behavior of solutions of nonlinear dispersive equations
非线性色散方程解的长时间行为
- 批准号:
15K17570 - 财政年份:2015
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Large time behavior of the solutions to the equations of fluid motion.
流体运动方程解的大时间行为。
- 批准号:
23540211 - 财政年份:2011
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large-time behavior of solutions to the drift-diffusion equation
漂移扩散方程解的大时间行为
- 批准号:
23740117 - 财政年份:2011
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Global properties and large-time behavior of solutions nonlinear parabolic equations
非线性抛物型方程解的全局性质和大时间行为
- 批准号:
0900947 - 财政年份:2009
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant
A study on the asymptotic behavior of infinite-time blow up solutions for parabolic equations involving critical Hardy-Sobolev exponent
涉及临界Hardy-Sobolev指数的抛物型方程无限时间爆炸解的渐近行为研究
- 批准号:
19740081 - 财政年份:2007
- 资助金额:
$ 10.92万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Large Time Behavior of Solutions to Stochastic Partial Differential Equations
随机偏微分方程解的大时间行为
- 批准号:
DP0663153 - 财政年份:2006
- 资助金额:
$ 10.92万 - 项目类别:
Discovery Projects
Local Regularity and Long Time Behavior of Solutions on Non-Linear Evolution Equations
非线性演化方程解的局部正则性和长期行为
- 批准号:
0406627 - 财政年份:2004
- 资助金额:
$ 10.92万 - 项目类别:
Standard Grant