Variational Problems Arising in Models for Superconductivity, Thin Film Blistering and Micromagnetics

超导、薄膜起泡和微磁学模型中出现的变分问题

基本信息

  • 批准号:
    0100540
  • 负责人:
  • 金额:
    $ 19.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

In this project, the principal investigator pursues a research program in nonlinear partial differential equations, the calculus of variations and singular perturbation theory. The researchtopics come from three applied settings: Ginzburg-Landau type models for superconductivity, von Karman type models for thin film blistering, and a model in micromagnetics. In the area of superconductivity, the P.I. will focus on the response of samples to large magnetic fields, with particular attention paid to the bifurcation from the normal state to a superconducting state. In the area of thin film blisters, the P.I. will investigate the nature of instabilities of the blistered region through the analysis of various dynamical models for blister growth and thin film growth. Finally, in the area of micromagnetics, the P.I. will analytically explore a model thought to capture a new kind of magnetic wall structure associated with a geometric constriction within the sample. This project concerns the behavior of various materials when subjected to outside fields or when forced to take on specific shapes. The energy of these systems is generally described through a function, often called an `order parameter,' whose values indicate what state is taken on by the material under a given set of circumstances (such as geometry, applied fields,etc.). Through this type of study, one hopes to gain an understanding of what shapes are optimal for a given sample in order to enhance or diminish various physical effects. For example, in the case of a superconductor, one hopes to learn which shapes are most conducive to producing a supercurrent that conducts without losses due to resistance. The relevant mathematical tools come from the calculus of variations and from the theory of nonlinear partial differential equations, as well as from methods of asymptotic analysis as applied to the previou
在这个项目中,主要研究人员从事的是非线性偏微分方程、变分法和奇异摄动理论的研究项目。研究课题来自三个应用背景:超导的Ginzburg-Landau模型、薄膜起泡的von Karman模型和微磁学的模型。在超导领域,P.I.将重点关注样品对大磁场的响应,特别关注从正常状态到超导状态的分叉。在薄膜起泡方面,P.I.将通过分析起泡生长和薄膜生长的各种动力学模型来研究起泡区域不稳定性的本质。最后,在微磁学领域,P.I.将分析性地探索一种模型,该模型被认为可以捕捉到一种与样品中的几何收缩相关的新型磁壁结构。这个项目涉及各种材料在受到外场作用或被迫呈现特定形状时的行为。这些系统的能量通常通过一个函数来描述,这个函数通常被称为‘序参数’,它的值表明在给定的一组环境(如几何、外加磁场等)下,材料呈现什么状态。通过这种类型的研究,人们希望了解对于给定的样本来说,什么形状是最佳的,以增强或减少各种物理效应。例如,在超导体的情况下,人们希望了解哪些形状最有利于产生没有电阻损耗的超导电流。相关的数学工具来自变分法和非线性偏微分方程组理论,以及前人应用的渐近分析方法

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Sternberg其他文献

Correction to: A Model Problem for Nematic-Isotropic Transitions with Highly Disparate Elastic Constants
  • DOI:
    10.1007/s00205-023-01879-4
  • 发表时间:
    2023-05-03
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Dmitry Golovaty;Michael R. Novack;Peter Sternberg;Raghavendra Venkatraman
  • 通讯作者:
    Raghavendra Venkatraman
Existence, uniqueness, and regularity for functions of least gradient.
最小梯度函数的存在性、唯一性和正则性。
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Sternberg;Graham Williams;W. Ziemer
  • 通讯作者:
    W. Ziemer
A Degenerate Isoperimetric Problem in the Plane
  • DOI:
    10.1007/s12220-017-9902-4
  • 发表时间:
    2017-08-03
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Jiri Dadok;Peter Sternberg
  • 通讯作者:
    Peter Sternberg

Peter Sternberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Sternberg', 18)}}的其他基金

Conference on Emerging Trends in Variational Models of Materials
材料变分模型新兴趋势会议
  • 批准号:
    2232136
  • 财政年份:
    2022
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Morphogenesis of First-Order Phase Transitions in Polar and Apolar Nematic Liquid Crystals
合作研究:极性和非极性向列液晶中一级相变的形态发生
  • 批准号:
    2106516
  • 财政年份:
    2021
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Continuing Grant
Vortices, phase boundaries and defects arising in nonlinear PDE and variational models
非线性偏微分方程和变分模型中出现的涡流、相界和缺陷
  • 批准号:
    1362879
  • 财政年份:
    2014
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Continuing Grant
Analysis of singular structures in elliptic and parabolic PDE with curvature effects
具有曲率效应的椭圆和抛物线偏微分方程中的奇异结构分析
  • 批准号:
    1101290
  • 财政年份:
    2011
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Continuing Grant
Behavior of Solutions to Time-Dependant and Inhomogenous Ginzburg-Landau Models
瞬态和非齐次 Ginzburg-Landau 模型解的行为
  • 批准号:
    0654122
  • 财政年份:
    2007
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Standard Grant
Workshop on Singularities in Partial Differential Equations and the Calculus of Variations
偏微分方程奇异性和变分法研讨会
  • 批准号:
    0602692
  • 财政年份:
    2006
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Standard Grant
Singular Structures Arising from Variational Problems in Materials Science
材料科学中变分问题产生的奇异结构
  • 批准号:
    0401328
  • 财政年份:
    2004
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Continuing Grant
U.S.-Chile Cooperative Research: Onset of Superconductivity in Large Magnetic Fields
美国-智利合作研究:大磁场中超导性的开始
  • 批准号:
    0071882
  • 财政年份:
    2000
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Standard Grant
Structure of Local Minimizers in Superconductivity and Models for Phase Transitions
超导局部极小化器的结构和相变模型
  • 批准号:
    9705774
  • 财政年份:
    1997
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Evolutions and the Calculusof Variations
数学科学:非线性演化和变分演算
  • 批准号:
    9322617
  • 财政年份:
    1994
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Standard Grant

相似海外基金

Inverse Problems Arising from Kinetic Theory and Applications
动力学理论及其应用产生的反问题
  • 批准号:
    2306221
  • 财政年份:
    2023
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Continuing Grant
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
  • 批准号:
    RGPIN-2020-06311
  • 财政年份:
    2022
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Discovery Grants Program - Individual
Problems Arising in Combinatorial Algebraic Geometry
组合代数几何中出现的问题
  • 批准号:
    573649-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 19.8万
  • 项目类别:
    University Undergraduate Student Research Awards
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
  • 批准号:
    RGPIN-2020-06311
  • 财政年份:
    2022
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Inverse Problems Arising from Seismology
地震学引起的几何反问题
  • 批准号:
    2204997
  • 财政年份:
    2022
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Standard Grant
Mathematical inverse problems arising in acoustic imaging
声学成像中出现的数学反问题
  • 批准号:
    RGPIN-2022-04547
  • 财政年份:
    2022
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
  • 批准号:
    RGPIN-2020-06311
  • 财政年份:
    2021
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
  • 批准号:
    RGPIN-2017-04491
  • 财政年份:
    2021
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Discovery Grants Program - Individual
Semiclassical analysis of spectral and scattering problems arising from energy-level crossings
能级交叉引起的光谱和散射问题的半经典分析
  • 批准号:
    21K03282
  • 财政年份:
    2021
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SaTC: CORE: Small: Classical and quantum algorithms for number-theoretic problems arising in cryptography
SaTC:核心:小:密码学中出现的数论问题的经典和量子算法
  • 批准号:
    2001470
  • 财政年份:
    2020
  • 资助金额:
    $ 19.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了