Analysis of singular structures in elliptic and parabolic PDE with curvature effects

具有曲率效应的椭圆和抛物线偏微分方程中的奇异结构分析

基本信息

  • 批准号:
    1101290
  • 负责人:
  • 金额:
    $ 24.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-15 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

This project focuses on the investigation of singular structures characterizing the solutions to various partial differential equations and variational problems that arise in significant physical models. There are two types of singular structures to be studied here: vortices (i.e., zeros of complex-valued order parameters) and phase boundaries (i.e., nodal sets of real-valued order parameters). Much of the work concerns the setting where the physical model--Ginzburg-Landau, Gross-Pitaevskii, Allen-Cahn, or Kawasaki-Ohta--is considered on a curved surface. The general goal is to further our understanding of what role curvature plays in the stabilization or destabilization of vortices and phase boundaries. The principal investigator plans to attack these problems through a combination of techniques including gamma-convergence, renormalized energy methods, second-variation arguments, constrained minimization, and parabolic nonlinear partial differential equations methods.The investigations to be pursued in this project arise from mathematical models for superconductors and superfluids, grain boundaries in alloys, and di-block copolymers. The main thrust of the research is to gain a better understanding of how curvature may play a role in affecting the behavior of these physical systems. For example, in recent years physicists have succeeded in producing superconductors in the shape of spherical shells, rather than just being flat, but at this point there is little theoretical work devoted to understanding how this shape may affect the response of the superconductor to an applied magnetic field. There may be hidden benefits or surprising behavior induced by the curvature of the superconducting surface that can be revealed through a careful mathematical analysis of the underlying models. The principal investigator will carry out much of this research in collaboration with Ph.D. students who will gain valuable experience studying these applications of mathematics as part of their dissertation work.
该项目的重点是研究奇异结构,这些奇异结构表征了各种偏微分方程和变分问题的解,这些问题出现在重要的物理模型中。这里有两种类型的奇异结构要研究:涡(即,复值序参数的零)和相位边界(即,实值序参数的节点集)。大部分的工作涉及的设置中的物理模型-金斯堡-朗道,大Pitaevskii,艾伦-卡恩,或川崎-太田-被认为是在一个曲面上。总的目标是进一步了解曲率在涡和相边界的稳定或不稳定中所起的作用。主要研究者计划通过伽马收敛,重整化能量方法,二次变分参数,约束最小化和抛物型非线性偏微分方程方法的组合来解决这些问题。在这个项目中要追求的研究来自超导体和超流体的数学模型,合金中的晶界,和二嵌段共聚物。这项研究的主要目的是更好地了解曲率如何影响这些物理系统的行为。例如,近年来,物理学家已经成功地制造出了球壳形状的超导体,而不仅仅是扁平的,但在这一点上,几乎没有理论工作致力于理解这种形状如何影响超导体对外加磁场的响应。超导表面的曲率可能会带来隐藏的好处或令人惊讶的行为,通过对底层模型的仔细数学分析可以揭示这些好处或行为。 首席研究员将与博士合作进行大部分研究。学生谁将获得宝贵的经验,研究这些应用数学作为他们的论文工作的一部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Sternberg其他文献

Correction to: A Model Problem for Nematic-Isotropic Transitions with Highly Disparate Elastic Constants
  • DOI:
    10.1007/s00205-023-01879-4
  • 发表时间:
    2023-05-03
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Dmitry Golovaty;Michael R. Novack;Peter Sternberg;Raghavendra Venkatraman
  • 通讯作者:
    Raghavendra Venkatraman
Existence, uniqueness, and regularity for functions of least gradient.
最小梯度函数的存在性、唯一性和正则性。
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Sternberg;Graham Williams;W. Ziemer
  • 通讯作者:
    W. Ziemer
A Degenerate Isoperimetric Problem in the Plane
  • DOI:
    10.1007/s12220-017-9902-4
  • 发表时间:
    2017-08-03
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Jiri Dadok;Peter Sternberg
  • 通讯作者:
    Peter Sternberg

Peter Sternberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Sternberg', 18)}}的其他基金

Conference on Emerging Trends in Variational Models of Materials
材料变分模型新兴趋势会议
  • 批准号:
    2232136
  • 财政年份:
    2022
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Morphogenesis of First-Order Phase Transitions in Polar and Apolar Nematic Liquid Crystals
合作研究:极性和非极性向列液晶中一级相变的形态发生
  • 批准号:
    2106516
  • 财政年份:
    2021
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Vortices, phase boundaries and defects arising in nonlinear PDE and variational models
非线性偏微分方程和变分模型中出现的涡流、相界和缺陷
  • 批准号:
    1362879
  • 财政年份:
    2014
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Behavior of Solutions to Time-Dependant and Inhomogenous Ginzburg-Landau Models
瞬态和非齐次 Ginzburg-Landau 模型解的行为
  • 批准号:
    0654122
  • 财政年份:
    2007
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Workshop on Singularities in Partial Differential Equations and the Calculus of Variations
偏微分方程奇异性和变分法研讨会
  • 批准号:
    0602692
  • 财政年份:
    2006
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Singular Structures Arising from Variational Problems in Materials Science
材料科学中变分问题产生的奇异结构
  • 批准号:
    0401328
  • 财政年份:
    2004
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Variational Problems Arising in Models for Superconductivity, Thin Film Blistering and Micromagnetics
超导、薄膜起泡和微磁学模型中出现的变分问题
  • 批准号:
    0100540
  • 财政年份:
    2001
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
U.S.-Chile Cooperative Research: Onset of Superconductivity in Large Magnetic Fields
美国-智利合作研究:大磁场中超导性的开始
  • 批准号:
    0071882
  • 财政年份:
    2000
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Structure of Local Minimizers in Superconductivity and Models for Phase Transitions
超导局部极小化器的结构和相变模型
  • 批准号:
    9705774
  • 财政年份:
    1997
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Evolutions and the Calculusof Variations
数学科学:非线性演化和变分演算
  • 批准号:
    9322617
  • 财政年份:
    1994
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant

相似国自然基金

对偶Auslander转置及其诱导模类的同调性质研究
  • 批准号:
    11501144
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
流体湍流运动的相关数学分析
  • 批准号:
    10971174
  • 批准年份:
    2009
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Dimension Reduction and Singular Limits of Prestrained Structures
预应变结构的降维和奇异极限
  • 批准号:
    2006439
  • 财政年份:
    2020
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Novel physics by manipulating singular band structures
通过操纵奇异能带结构的新颖物理学
  • 批准号:
    17K14358
  • 财政年份:
    2017
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Geometric structures which admits singular points and the realization problem
承认奇点的几何结构及其实现问题
  • 批准号:
    16K17605
  • 财政年份:
    2016
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Mathematical analysis of differential operators derived from singular geometric structures and their probabilistic counterparts
从奇异几何结构导出的微分算子及其概率对应物的数学分析
  • 批准号:
    15K17554
  • 财政年份:
    2015
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Differentiable structures on metric measure spaces, einstein spaces, quantitative behavior of singular sets
度量测度空间、爱因斯坦空间、奇异集的定量行为上的可微结构
  • 批准号:
    1406407
  • 财政年份:
    2014
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Combined shape and cross-section optimisation of composite structures based on the singular value decomposition of sensitivity matrices
基于灵敏度矩阵奇异值分解的复合材料结构形状和截面联合优化
  • 批准号:
    227160449
  • 财政年份:
    2012
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Research Grants
Geometry and Topology of Singular Structures with Applications to Computer Imaging
奇异结构的几何和拓扑及其在计算机成像中的应用
  • 批准号:
    1105470
  • 财政年份:
    2011
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Study of structures of singular phenomena via complex global analysis
通过复杂的全局分析研究奇异现象的结构
  • 批准号:
    23540207
  • 财政年份:
    2011
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singular structures in Frobenius and tt* geometries
Frobenius 和 tt* 几何中的奇异结构
  • 批准号:
    EP/H019553/1
  • 财政年份:
    2010
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Research Grant
Geometry and Topology of Singular Structures with Applications to Imaging
奇异结构的几何和拓扑及其在成像中的应用
  • 批准号:
    0706941
  • 财政年份:
    2007
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了