Complex Dynamics and Classification of Algebraic Surfaces
复杂动力学和代数曲面分类
基本信息
- 批准号:9706018
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-06-01 至 1999-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Buzzard 9706018 This project has three components. The first component is the study of the dynamics of polynomial maps of two variables. The primary goal of this component is to show that the topological notion of Omega stability is equivalent to the analytic notion of hyperbolicity. Similar programs have led to a great deal of activity and many new results in the fields of one complex variable dynamics and real dynamics. The second component is the study of polynomial mappings of three variables using techniques of pluripotential theory. Pluripotential theory has been an effective tool in the study of the dynamics of polynomial mappings of one and two variables. The main goal of this component is to determine the extent to which this tool can be applied to higher dimensional polynomial diffeomorphisms, whose dynamics have been studied very little. The third component is the classification of algebraic surfaces in terms of a weak notion of hyperbolicity. The main goal of this component is to show that the existence of a rank-two holomorphic map from complex 2-space to an algebraic surface is equivalent to the existence of a Zariski dense image of the complex plane. The main focus of this project is the study of iterated maps, which are mathematical abstractions for processes which are repeated many times. Such repeated processes are commonly found in many diverse fields. For instance, many biological processes, such as DNA replication, are simple procedures which are repeated many times. More directly related to the current project is the notion of a genetic algorithm, which is an attempt to use some of the features of biological reproduction, such as genetic crossover and competition, to produce effective computer algorithms. The crossover part of this procedure can be modeled by iterated maps very similar to those under study in the current project. An important feature of repeated processes is that many times, a slight change in the parameters of a process which is repeated many times can lead to a drastic change in the final outcome. While this may be desirable behavior in some cases, it is more common to prefer systems which are reliable and relatively unaffected by small errors or changes in conditions. Hence it is natural to ask which processes are stable in the sense that a small change in parameters leads to a small change in the final outcome. Resolving this question for some systems is the primary aim of the current project.
抽象秃鹰9706018 该项目有三个组成部分。 第一部分是研究二元多项式映射的动力学。 这个部分的主要目的是证明Ω稳定性的拓扑概念等价于双曲性的解析概念。 类似的程序在一复变量动力学和真实的动力学领域已经引起了大量的活动和许多新的结果。 第二部分是研究多项式映射的三个变量使用技术的多能理论。 多势理论是研究一元和二元多项式映射动力学的有效工具。 这个组件的主要目标是确定在何种程度上可以应用到高维多项式同构,其动力学研究得很少。 第三个组成部分是分类的代数曲面方面的一个弱概念的双曲性。 这个部分的主要目的是证明从复2-空间到代数曲面的秩2全纯映射的存在性等价于复平面的Zebraki稠密像的存在性。 这个项目的主要重点是迭代映射的研究,这是重复多次的过程的数学抽象。 这种重复的过程在许多不同的领域都很常见。 例如,许多生物过程,如DNA复制,是重复多次的简单程序。 与当前项目更直接相关的是遗传算法的概念,它试图使用生物繁殖的一些特征,如遗传交叉和竞争,以产生有效的计算机算法。 这个过程的交叉部分可以通过与当前项目中研究的非常相似的迭代映射来建模。 重复过程的一个重要特征是,重复多次的过程的参数的微小变化可能导致最终结果的急剧变化。 虽然在某些情况下这可能是理想的行为,但更常见的是更喜欢可靠且相对不受小误差或条件变化影响的系统。 因此,很自然地会问,在参数的微小变化导致最终结果的微小变化的意义上,哪些过程是稳定的。 解决某些系统的这个问题是当前项目的主要目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregery Buzzard其他文献
Gregery Buzzard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregery Buzzard', 18)}}的其他基金
Collaborative Research: Linking Pharmacokinetics to Epidemiological Models of Vector-Borne Diseases and Drug Resistance Prevention
合作研究:将药代动力学与媒介传播疾病和耐药性预防的流行病学模型联系起来
- 批准号:
1814545 - 财政年份:2018
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Robust reconstruction techniques for nonuniformly sampled data
非均匀采样数据的鲁棒重建技术
- 批准号:
1318894 - 财政年份:2013
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Computational Modeling of Cardiac Electrical Response
心脏电反应的计算模型
- 批准号:
0408293 - 财政年份:2005
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9804365 - 财政年份:1998
- 资助金额:
$ 4万 - 项目类别:
Fellowship Award
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Label-free, live-cell classification of neural stem cell activation state and dynamics
神经干细胞激活状态和动力学的无标记活细胞分类
- 批准号:
10863309 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
eMB: Mathematical Classification of Complexity in Population Dynamics
eMB:人口动态复杂性的数学分类
- 批准号:
2325146 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Sediment transport model considering SGS classification and its application to fine sediment dynamics in a watershed
考虑SGS分类的泥沙输运模型及其在流域细泥沙动力学中的应用
- 批准号:
22H00228 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Dynamics Beyond Turbulence and Obstructions to Classification
超越湍流和分类障碍的动力学
- 批准号:
2154258 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Dynamics and the Classification of Geometries on Manifolds
流形上的动力学和几何分类
- 批准号:
2203493 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Ultrasound image classification of knee osteoarthritis according to meniscal dynamics during walking and establishment of rehabilitation method
根据步行时半月板动力学对膝骨关节炎进行超声图像分类及康复方法的建立
- 批准号:
21K11191 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF-BSF: Dynamics and Operator Algebras beyond the Elliott Classification Program
NSF-BSF:艾略特分类计划之外的动力学和算子代数
- 批准号:
2055771 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: The Dynamics of State and Scientific Classification
博士论文研究:国家动态与科学分类
- 批准号:
1904247 - 财政年份:2019
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Model-Theoretic Classification, Graph Combinatorics, and Topological Dynamics
模型理论分类、图组合学和拓扑动力学
- 批准号:
1600796 - 财政年份:2016
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Development of Molecular Dynamics Classification Theories for Life Science and Drug Design
生命科学和药物设计分子动力学分类理论的发展
- 批准号:
15KT0103 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)