Kakeya Maximal Operators and Oscillatory Integrals

Kakeya 极大算子和振荡积分

基本信息

  • 批准号:
    9706764
  • 负责人:
  • 金额:
    $ 6.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-01 至 2000-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT Tao will study geometrical analysis conjectures and results, and relate them to oscillatory integral statements such as the restriction conjecture. A typical example of the former is the Kakeya conjecture, that a set which contains a line segment in every direction in R^n must have dimension n. A typical example of the latter is the generalized Strichartz estimate for various PDE (the wave equation, the Schrodinger equation, etc.). It has been known since the 1970s that there is an intimate relationship between the two types of statements, but no systematic approach exists, and the few concrete connections that are known are not very satisfactory. We hope to collect, simplify, unify, and extend previous results in this direction. Tao will also attack some of these conjectures (notably the Kakeya conjecture) directly, using some new and promising techniques; for example, Tao will exploit the affine invariance of the Kakeya conjecture. One of the aims of this work is to deepen our understanding of oscillatory integrals, which are a type of mathematical expression which occur in many places in physics (optics, quantum mechanics, acoustics, and any other field of physics dealing with waves), as well as having theoretical importance in other fields of mathematics. Understanding these integrals, and in particular knowing how large they can get, may ultimately lead to new designs for physical applications (e.g. tennis rackets that maximize the area of the "sweet spot", or curved reflectors that have a large number of focus points for a wide range of frequencies), or at least place theoretical limits on such designs. There are also numerical applications when modeling certain physical systems (e.g. the seismic behavior of the Earth); if one knows that a certain oscillatory integral will never become very "large" in a certain technical sense, then this will provide a theoretical guarantee to the accuracy of the computer sim ulation of the physical system. Tao will study these oscillatory integrals with the aid of geometry; a connection between these two fields of mathematics is known (being somewhat similar to the relationship between geometrical optics and the wave theory of light), but is not understood completely. If this connection is developed thoroughly enough, we may be able to reduce difficult questions in oscillatory integrals to simpler problems in geometry, or at least use geometrical techniques to obtain partial progress on the oscillatory integral problems.
Tao将研究几何分析的猜想和结果,并将它们与振荡积分命题(如限制猜想)联系起来。前者的一个典型例子是Kakeya猜想,即在R^n的每个方向上包含线段的集合必须具有n维。后者的一个典型例子是各种偏微分方程(波动方程,薛定谔方程等)的广义Strichartz估计。自20世纪70年代以来,人们已经知道,这两种类型的陈述之间存在着密切的关系,但没有系统的方法存在,而且已知的少数具体联系也不是很令人满意。我们希望在这个方向上收集、简化、统一和扩展以往的成果。Tao还将使用一些新的和有前途的技术直接攻击其中的一些猜想(特别是Kakeya猜想);例如,陶将利用Kakeya猜想的仿射不变性。这项工作的目的之一是加深我们对振荡积分的理解,振荡积分是一种数学表达式,在物理学(光学、量子力学、声学和任何其他与波有关的物理领域)的许多地方都有出现,在其他数学领域也具有理论重要性。理解这些积分,特别是知道它们可以得到多大,可能最终导致物理应用的新设计(例如,网球拍最大化“最佳点”的面积,或弯曲反射器在宽频率范围内具有大量焦点),或者至少对这些设计提出理论限制。在模拟某些物理系统(例如地球的地震行为)时也有数值应用;如果人们知道某一振荡积分在某种技术意义上永远不会变得非常“大”,那么这将为物理系统的计算机模拟的准确性提供理论保证。陶将借助几何学来研究这些振荡积分;这两个数学领域之间的联系是已知的(有点类似于几何光学和光的波动理论之间的关系),但还没有完全理解。如果这种联系发展得足够彻底,我们也许能够将振荡积分中的难题简化为更简单的几何问题,或者至少使用几何技术来获得振荡积分问题的部分进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Garnett其他文献

357 - The Classification, Frequency and Clinical Significance of Atypical Prostate Hyperplasia (APH) in Otherwise Benign Prostatic Needle Biopsies (BX)
  • DOI:
    10.1016/s0022-5347(17)75507-3
  • 发表时间:
    1987-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Garnett;Michael Carter;Ryoichi Oyasu
  • 通讯作者:
    Ryoichi Oyasu

John Garnett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Garnett', 18)}}的其他基金

Problems in Function Theory
函数论问题
  • 批准号:
    0758619
  • 财政年份:
    2008
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
Problems in Function Theory
函数论问题
  • 批准号:
    0401720
  • 财政年份:
    2004
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
Problems in Function Theory
函数论问题
  • 批准号:
    0070782
  • 财政年份:
    2000
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Function Theory
数学科学:函数论问题
  • 批准号:
    9401269
  • 财政年份:
    1994
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric Properties of Domains, Extremal Quasiconformal Mappings and Integrability of Conformal Mappings
数学科学:域的几何性质、极值拟共形映射和共形映射的可积性
  • 批准号:
    9203407
  • 财政年份:
    1992
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Functional Analysis and Function Theory
数学科学:泛函分析和函数论
  • 批准号:
    9104446
  • 财政年份:
    1991
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Harmonic Measure Analytic Capacity and Rectifiable Sets
数学科学:调和测度分析能力和可整流集
  • 批准号:
    9100671
  • 财政年份:
    1991
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant

相似海外基金

Stochastic maximal inequalities for semimartingales and their applications to statistics
半鞅的随机最大不等式及其在统计中的应用
  • 批准号:
    24K14866
  • 财政年份:
    2024
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Next-Generation Maximal Extractable Value (MEV) Proof Distributed Ledger Architecture
SBIR 第一阶段:下一代最大可提取价值(MEV)证明分布式账本架构
  • 批准号:
    2213017
  • 财政年份:
    2023
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
Endpoint estimates for geometric maximal operators
几何最大算子的端点估计
  • 批准号:
    23KF0188
  • 财政年份:
    2023
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Maximal Subellipticity
最大次椭圆度
  • 批准号:
    2153069
  • 财政年份:
    2022
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
On a maximal element of a moduli space of Riemannian metrics
关于黎曼度量模空间的最大元素
  • 批准号:
    22K13916
  • 财政年份:
    2022
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Limits to Evolvability Define the Maximal Sustainable Niche of Generalists
进化性的限制定义了通才的最大可持续利基
  • 批准号:
    2147101
  • 财政年份:
    2022
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
Does a large body mass index require adults to use a greater proportion of their maximal capacity?
大的体重指数是否需要成年人使用更大比例的最大容量?
  • 批准号:
    572958-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.7万
  • 项目类别:
    University Undergraduate Student Research Awards
Precise operator norm estimates for diverse collections of maximal directional Hilbert transforms
最大方向希尔伯特变换的不同集合的精确算子范数估计
  • 批准号:
    566582-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Topics in Harmonic Analysis: Maximal Functions, Singular Integrals, and Multilinear Inequalities
调和分析主题:极大函数、奇异积分和多重线性不等式
  • 批准号:
    2154835
  • 财政年份:
    2022
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Standard Grant
CAREER: Maximal and Scalable Unified Debugging for the JVM Ecosystem
职业:JVM 生态系统的最大且可扩展的统一调试
  • 批准号:
    2131943
  • 财政年份:
    2021
  • 资助金额:
    $ 6.7万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了