Oscillatory Sums and Radon - Fourier Analysis
振荡和和氡气 - 傅立叶分析
基本信息
- 批准号:9706883
- 负责人:
- 金额:$ 8.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Oskolkov will continue his investigations of oscillatory sums and integrals involving imaginary exponentials of real algebraic polynomials. The coefficients of the polynomials are considered as independent real variables. These sums and integrals establish interconnections between such apparently distant fields as Harmonic Analysis, Analytic Number Theory and Partial Differential Equations. He will also elaboratee on Radon-Fourier analysis for functions of several variables. Special emphasis will be made on associated problems of ridge approximation, which consist in selection of best fit linear combinations of planar wave type functions. These problems are of highly non-linear nature, especially with respect to optimal selection of wave vectors. Immediate ramifications of such research include neural network models that have found wide applications in industry, engineering, computer science, finance and medicine. The Radon transform is an acknowledged powerful tool in several applied areas ranging from classical quantum mechanics and optics to X-ray tomography. In computational X-ray tomography, ridge approximation can be interpreted as reconstruction of images of non-homogeneities such as tumors. Another extremely different field is recognition of main trends in evolution of large systems such as bacteria populations or the stock market, where an enormous number of variables must be modeled.
Oskolkov将继续研究涉及实代数多项式的虚指数的振荡和和积分。将多项式的系数视为独立的实变量。这些和和积分在调和分析、解析数理论和偏微分方程等看似遥远的领域之间建立了相互联系。他还将详细阐述多变量函数的Radon-Fourier分析。文中将特别强调脊形近似的相关问题,包括平面波型函数的最佳拟合线性组合的选择。这些问题是高度非线性的,特别是关于波矢的最优选择。这类研究的直接后果包括神经网络模型,这些模型在工业、工程、计算机科学、金融和医学中得到了广泛应用。Radon变换在从经典量子力学和光学到X射线层析成像的几个应用领域中都是公认的强大工具。在计算X射线层析成像中,脊线近似可以解释为对肿瘤等非均质性图像的重建。另一个非常不同的领域是认识大系统进化的主要趋势,如细菌种群或股票市场,其中必须对大量变量进行建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konstantin Oskolkov其他文献
Konstantin Oskolkov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konstantin Oskolkov', 18)}}的其他基金
Harmonic, Number-theoretic, and PDE Analysis of Talbot's Phenomenon
塔尔博特现象的调和、数论和偏微分方程分析
- 批准号:
0410012 - 财政年份:2004
- 资助金额:
$ 8.66万 - 项目类别:
Continuing Grant
相似海外基金
Spatial restriction of exponential sums to thin sets and beyond
指数和对稀疏集及以上的空间限制
- 批准号:
2349828 - 财政年份:2024
- 资助金额:
$ 8.66万 - 项目类别:
Standard Grant
Ubiquity of Kloosterman sums in Number Theory and Beyond
克洛斯特曼求和在数论及其他领域中无处不在
- 批准号:
DP230100534 - 财政年份:2023
- 资助金额:
$ 8.66万 - 项目类别:
Discovery Projects
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
- 批准号:
EP/V055755/1 - 财政年份:2022
- 资助金额:
$ 8.66万 - 项目类别:
Research Grant
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2022
- 资助金额:
$ 8.66万 - 项目类别:
Discovery Grants Program - Individual
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振荡积分
- 批准号:
2200470 - 财政年份:2022
- 资助金额:
$ 8.66万 - 项目类别:
Continuing Grant
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2022
- 资助金额:
$ 8.66万 - 项目类别:
Discovery Grants Program - Individual
LEAPS-MPS: Elliptic Dedekind Sums, Eisenstein Cocycles, and p-adic L-Functions
LEAPS-MPS:椭圆戴德金和、爱森斯坦余循环和 p 进 L 函数
- 批准号:
2212924 - 财政年份:2022
- 资助金额:
$ 8.66万 - 项目类别:
Standard Grant
New techniques for exponential sums over low degree polynomials
低次多项式指数和的新技术
- 批准号:
DE220100859 - 财政年份:2022
- 资助金额:
$ 8.66万 - 项目类别:
Discovery Early Career Researcher Award
Anatomy and Physiology of Numbers -Statistics of Primes and Aliquot Sums-
数字的解剖学和生理学-素数和等分和的统计-
- 批准号:
21K13772 - 财政年份:2021
- 资助金额:
$ 8.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometrical and arithmetic study of invariants appearing exponential sums of representations
指数和表示的不变量的几何和算术研究
- 批准号:
21K13773 - 财政年份:2021
- 资助金额:
$ 8.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists