Mathematical Sciences: Trace Extensions, Commutator Spaces and Single Commutators with Applications to the Homology, Determinants and K-Theory of Operator Ideals

数学科学:迹扩展、换向器空间和单换向器及其在算子理想的同调性、行列式和 K 理论中的应用

基本信息

  • 批准号:
    9706911
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-15 至 1999-06-30
  • 项目状态:
    已结题

项目摘要

Abstract Weiss The commutator structure of operator ideals (e.g., the class of single commutators, AB-BA, with A, B from two two-sided operator ideals, respectively, along with commutator ideals (their linear span)) and related trace extension problems will be investigated and exploited to determine the Hochschild and cyclic homology for two-sided ideals in B(H), the class of bounded linear operators acting on a separable, infinite-dimensional, complex Hilbert space. A close connection between certain algebraic K-groups has been found for a wide class of two-sided ideals in B(H). Recent important advances have been made in characterizing those ideals which have zero homology (i.e., those commutator ideals which are the ideals themselves and hence have no trace) and in generalizing N. J. Kalton's characterization of the commutator ideal of the Hilbert-Schmidt class, and also the commutator ideal of the trace class (with B(H)), to arbitrary ideals. A natural generalization is a characterization of those ideals whose commutator ideal (with B(H)) contains T for a given compact operator T. A question arising in this context is: Which normed ideals admit a continuous or positive trace? The answer to this question for symmetrically normed ideals with a dense finitely generated subideal is already settled. Techniques under development involve exploiting recently found obstructions preventing certain ideals from having a trace extension beyond certain smaller ideals, and are related to the associated commutator classes and commutator ideals. The study of operator algebras and operator ideals (i.e., special classes of operators each operator of which may be viewed as an infinite matrix (a square, infinite array of numbers)) involves the investigation of operations between their operators, especially addition and multiplication. Operator algebras with these operations play an indispensable roll throughout mathematics, science, business, computer science and many of their applications to other f ields. The well-known commutative law of multiplication is that AB = BA for all numbers A and B, i.e., one always obtains the same result no matter which order one multiplies numbers. Algebras whose elements have this property are called commutative algebras. But most algebras are not commutative and studying the structure of their non-zero commutators, AB-BA, becomes central in understanding the algebras and their relation to the more easily understood commutative algebras, inside which AB-BA is always zero. The famous Heisenberg Uncertainly Principle in physics provides an early example of the relevance of commutators. This proposal is to expand our knowledge of the commutator structure of a number of important operator algebras and to use the new information towards developing techniques to settle some old and new open problems in commutator theory and in operator algebras and ideals.
摘要:本文研究了算子理想的换位子结构(例如,单换位子AB-BA类,分别具有A和B的两个双边算子理想,以及换位子理想(它们的线性张成))和相关的迹扩展问题,以确定B(H)中双边理想的Hochschild和循环同调,B(H)是作用于可分离的无限维复Hilbert空间的有界线性算子类。在B(H)中,对于一类广义的双边理想,我们发现了若干代数k群之间的密切联系。最近在描述零同调的理想(即,那些交换子理想本身就是理想,因此没有迹)和推广N. J. Kalton对Hilbert-Schmidt类的交换子理想的描述,以及对迹类的交换子理想(带B(H))的描述到任意理想方面取得了重要进展。自然推广是对那些理想的表征,这些理想的对易子理想(带B(H))对于给定的紧算子T包含T。在这种情况下产生的问题是:哪些赋范理想允许连续或正迹?对于具有密集有限生成子粒子的对称赋范理想,这个问题的答案已经确定。正在开发的技术涉及利用最近发现的阻止某些理想具有超越某些较小理想的跟踪扩展的障碍,并且与相关的换向子类和换向子理想相关。算子代数和算子理想(即一类特殊的算子,其中的每个算子都可以看作是一个无限矩阵(一个正方形,无限数组))的研究涉及到算子之间的运算,特别是加法和乘法的研究。具有这些运算的算子代数在数学、科学、商业、计算机科学及其在许多其他领域的应用中发挥着不可或缺的作用。众所周知的乘法交换律是AB = BA对所有的数字A和B,也就是说,一个人总是得到相同的结果,无论你乘哪个顺序的数字。元素具有这种性质的代数称为交换代数。但大多数代数是不可交换的,研究它们的非零对易子AB-BA的结构,对于理解代数及其与更容易理解的交换代数的关系至关重要,在交换代数中AB-BA总是零。物理学中著名的海森堡测不准原理为换向子的相关性提供了一个早期的例子。本文的目的是扩大我们对一些重要算子代数的换向子结构的认识,并利用新的信息发展技术来解决换向子理论和算子代数及理想中的一些新的和旧的开放性问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gary Weiss其他文献

Matrix norm inequalities and the relative Dixmier property
  • DOI:
    10.1007/bf01236652
  • 发表时间:
    1988-01-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Kenneth Berman;Herbert Halpern;Victor Kaftal;Gary Weiss
  • 通讯作者:
    Gary Weiss
A Quantitative Machine Learning Approach to Evaluating Letters of Recommendation
评估推荐信的定量机器学习方法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yijun Zhao;Tianyu Wang;Douglas Mensah;Ellise Parnoff;Siyi He;Gary Weiss
  • 通讯作者:
    Gary Weiss
Commutators of Hilbert-Schmidt operators I
Intelligent Telecommunication Technologies
智能电信技术
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gary Weiss;John Eddy;Sholom Weiss
  • 通讯作者:
    Sholom Weiss
Paving small matrices and the Kadison-Singer Extension Problem II—computational results
  • DOI:
    10.1007/s11425-011-4321-7
  • 发表时间:
    2011-11-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Dieter Schmidt;Gary Weiss;Vrej Zarikian
  • 通讯作者:
    Vrej Zarikian

Gary Weiss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gary Weiss', 18)}}的其他基金

SHB: Small: Cell Phone-Based Activity Tracking for Telehealth
SHB:小型:基于手机的远程医疗活动跟踪
  • 批准号:
    1116124
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Trace Extensions and Commutator Spaces with Applications to the Homology, Determinants and K-Theory of Operator Ideals
数学科学:迹扩展和交换子空间及其在算子理想的同调、行列式和 K 理论中的应用
  • 批准号:
    9503062
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Quasitriangularity in von Neumann Algebras and Other Topics
数学科学:冯·诺依曼代数和其他主题中的拟三角性
  • 批准号:
    9123249
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Operator Theory on Pavings, Compact Derivations in Operator Algebras and Commutators
数学科学:铺路算子理论中的问题、算子代数和换向器中的紧致导数
  • 批准号:
    8503390
  • 财政年份:
    1985
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Normal Operators, Fuglede's Theorem, and Hilbert-Schmidt Operators
正规运算符、Fuglede 定理和 Hilbert-Schmidt 运算符
  • 批准号:
    7702147
  • 财政年份:
    1977
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Sheaves on Witt Schemes and Trace Formula with Application to Representation Theory
数学科学:维特方案和迹公式及其在表示论中的应用
  • 批准号:
    9700458
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RUI: Mathematical Sciences: Spherical Characters on P-adic Coset Spaces and the Relative Trace Formula
RUI:数学科学:P-进陪集空间上的球面特征和相对迹公式
  • 批准号:
    9623125
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Trace Extensions and Commutator Spaces with Applications to the Homology, Determinants and K-Theory of Operator Ideals
数学科学:迹扩展和交换子空间及其在算子理想的同调、行列式和 K 理论中的应用
  • 批准号:
    9503062
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: A Stable Trace Formula for the Rank-Two Symplectic Group
数学科学:二阶辛群的稳定迹公式
  • 批准号:
    9401691
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Relative Trace Formulas
数学科学:相对微量公式
  • 批准号:
    9403538
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Invariants and Trace Identities
数学科学:不变量和迹恒等式
  • 批准号:
    9303230
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topological Trace Formula
数学科学:拓扑迹公式
  • 批准号:
    9303550
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Mathematical Sciences: Trace Forms and Stickelberger Relations
数学科学:迹形式和斯蒂克伯格关系
  • 批准号:
    9205129
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: An Investigation of Relations Between Permutation Representations and Trace Forms of FieldExtensions
数学科学:排列表示与域扩展的迹形式之间关系的研究
  • 批准号:
    9253129
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Twisted Trace Formula and Cubic Non Normal Extensions
数学科学:扭曲迹公式和三次非正规扩展
  • 批准号:
    9201741
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了