Mathematical Sciences: Sheaves on Witt Schemes and Trace Formula with Application to Representation Theory

数学科学:维特方案和迹公式及其在表示论中的应用

基本信息

  • 批准号:
    9700458
  • 负责人:
  • 金额:
    $ 8.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-01 至 2000-06-30
  • 项目状态:
    已结题

项目摘要

Polishchuk 9700458 This research is concerned with generalizing the approach of character sheaves from the case of groups over finite fields to groups over p-adic fields. The work involves two parts. The first part is to devise a notion of sheaves on ind-schemes mimicking that of locally-constant functions on p-adic varieties. The second part is to generalize the Lefschetz-Verdier trace formula and its application to the construction of the discrete series representation of a reductive group over a finite field based on the gluing of perverse sheaves. This is research in the field of algebraic geometry. Algebraic geometry is one of the oldest parts of modern mathematics, but one which has had a revolutionary flowering in the past quarter-century. In its origin, it treated figures that could be defined in the plane by the simplest equations, namely polynomials. Nowadays the field makes use of methods not only from algebra, but from analysis and topology, and conversely is finding application in those fields as well as in physics, theoretical computer science, and robotics.
本文研究了将特征束的方法从有限域上群的情况推广到p进域上群的情况。这项工作包括两部分。第一部分是设计一个在独立格式上的束的概念,模仿p进变量上的局部常数函数。第二部分推广了Lefschetz-Verdier迹公式,并将其应用于构造有限域上基于反常束胶合的约化群的离散级数表示。这是代数几何领域的研究。代数几何是现代数学中最古老的部分之一,但在过去的四分之一个世纪里,它已经有了革命性的发展。在它的起源中,它处理的图形可以用最简单的方程,即多项式,在平面上定义。如今,该领域不仅使用代数的方法,还使用分析和拓扑的方法,相反,它在这些领域以及物理学、理论计算机科学和机器人技术中也得到了应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Polishchuk其他文献

De Rham cohomology for supervarieties
超簇的 De Rham 上同调
  • DOI:
    10.1007/s40879-024-00736-2
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk
A tribute to Sasha Beilinson
  • DOI:
    10.1007/s00029-018-0399-x
  • 发表时间:
    2018-02-16
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Michael Finkelberg;Dennis Gaitsgory;Alexander Goncharov;Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk
$${\mathbb A}^{0|1}$$ A 0 | 1
$${mathbb A}^{0|1}$$ A 0 |
Schwartz $\kappa$-densities for the moduli stack of rank $2$ bundles on a curve over a local field
局部场曲线上的阶 $2$ 束的模堆栈的 Schwartz $kappa$-密度
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Braverman;D. Kazhdan;Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk
Moduli spaces of nonspecial pointed curves of arithmetic genus 1
  • DOI:
    10.1007/s00208-017-1562-y
  • 发表时间:
    2017-06-30
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk

Alexander Polishchuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Polishchuk', 18)}}的其他基金

Analytic Langlands Correspondence
分析朗兰兹通讯
  • 批准号:
    2349388
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Continuing Grant
Derived Categories, Noncommutative Orders, and Other Topics
派生范畴、非交换顺序和其他主题
  • 批准号:
    2001224
  • 财政年份:
    2020
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
Moduli of A-Infinity Structures and Related Topics
A-无穷大结构的模及相关主题
  • 批准号:
    1700642
  • 财政年份:
    2017
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
A-infinity structures and derived categories in algebraic geometry
代数几何中的 A-无穷大结构和派生范畴
  • 批准号:
    1400390
  • 财政年份:
    2014
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
Derived categories techniques in algebraic geometry
代数几何中的派生范畴技术
  • 批准号:
    1001364
  • 财政年份:
    2010
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
Complex geometry of noncommutative tori and t-structures on derived categories
派生范畴上非交换环面和 t 结构的复杂几何
  • 批准号:
    0601034
  • 财政年份:
    2006
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Continuing Grant
Topics in Algebraic Geometry, Non-commutative Geometry and Representation Theory
代数几何、非交换几何和表示论专题
  • 批准号:
    0527042
  • 财政年份:
    2004
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
Topics in Algebraic Geometry, Non-commutative Geometry and Representation Theory
代数几何、非交换几何和表示论专题
  • 批准号:
    0302215
  • 财政年份:
    2003
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
Homological Mirror Symmetry and Functional Equations
同调镜像对称和函数方程
  • 批准号:
    0070967
  • 财政年份:
    2000
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
  • 批准号:
    EP/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
  • 批准号:
    EP/Z000580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Research Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
  • 批准号:
    2330043
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Cooperative Agreement
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    2349230
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
  • 批准号:
    2341900
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
  • 批准号:
    2342821
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
  • 批准号:
    2326751
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Continuing Grant
Meta-analysis for environmental sciences
环境科学荟萃分析
  • 批准号:
    NE/Y003721/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了