Analytical and Geometrical Problems in Non Linear Partial Differential Equations
非线性偏微分方程中的解析和几何问题
基本信息
- 批准号:0654267
- 负责人:
- 金额:$ 60.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Analytical and Geometrical Problems in Nonlinear Partial Differential EquationsAbstract of Proposed Research Luis CaffarelliThis research is to study the mathematical analysis of a number of scientific phenomena that are modeled by nonlinear partial differential equations. Specific topics include the properties of solutions of nonlinear problems involving anomalous (in particular integral) diffusion processes, such as phase transitions, fluid dynamics and optimal control. Also nonlinear random homogenization of fully non linear equations or constrained problems in randomly perforated domains. Antenna design for general signal propagation laws, and other Minkowski type problemsSpecific examples of the type of phenomena being studied include the analysis of equations modeling boundary control (optimizing insulation shape across a surface, or the behavior of semi permeable membranes), surface flame propagation and the pricing of options when processes are highly discontinuous ( Levi processes). Also the effective heating of a family of small, randomly distributed, heating sources, the propagation of a flame on a medium with random occlusions or the sliding of a drop on a rough surface and the design of an optimal reflecting surface in a periodic medium.
非线性偏微分方程中的分析和几何问题--研究建议摘要 路易斯·卡法雷利本研究旨在研究一些由非线性偏微分方程建模的科学现象的数学分析。 具体的主题包括涉及异常(特别是积分)扩散过程,如相变,流体动力学和最优控制的非线性问题的解决方案的属性。 也可用于完全非线性方程组的非线性随机均匀化或随机开孔区域中的约束问题。天线设计一般的信号传播规律,和其他闵可夫斯基型problemsSpecific的例子类型的现象正在研究包括方程建模边界控制(优化绝缘形状在一个表面,或行为的半透膜),表面火焰传播和定价的过程是高度不连续的选项(列维过程)的分析。也是一个家庭的小,随机分布,热源,火焰的传播与随机闭塞的介质或一滴在粗糙表面上的滑动和周期性介质中的最佳反射表面的设计的有效加热。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis Caffarelli其他文献
Global C1,α regularity for Monge-Ampère equation and convex envelope
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Luis Caffarelli;Lan Tang;Xu-Jia Wang - 通讯作者:
Xu-Jia Wang
Luis Caffarelli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis Caffarelli', 18)}}的其他基金
Non-Linear Diffusion Modeling: From Geometry, to Materials, to Social Dynamics
非线性扩散建模:从几何到材料,再到社会动力学
- 批准号:
2000041 - 财政年份:2020
- 资助金额:
$ 60.03万 - 项目类别:
Standard Grant
Analytical and geometrical properties of non linear diffusion equations
非线性扩散方程的分析和几何性质
- 批准号:
1500871 - 财政年份:2015
- 资助金额:
$ 60.03万 - 项目类别:
Continuing Grant
Current Trends in Analysis and Partial Differential Equations
分析和偏微分方程的当前趋势
- 批准号:
1540162 - 财政年份:2015
- 资助金额:
$ 60.03万 - 项目类别:
Standard Grant
Analytical and geometrical problems involving non linear diffusion processes
涉及非线性扩散过程的分析和几何问题
- 批准号:
1160802 - 财政年份:2012
- 资助金额:
$ 60.03万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Emerging issues in the sciences involving non standard diffusion
FRG:协作研究:涉及非标准扩散的科学中的新问题
- 批准号:
1065926 - 财政年份:2011
- 资助金额:
$ 60.03万 - 项目类别:
Standard Grant
On the Homogenization of some Free Boundary Problems
一些自由边界问题的齐次化
- 批准号:
0456647 - 财政年份:2005
- 资助金额:
$ 60.03万 - 项目类别:
Standard Grant
Analytical and Geometrical Aspects of Non Linear Partial Differential Equations
非线性偏微分方程的解析和几何方面
- 批准号:
0140338 - 财政年份:2002
- 资助金额:
$ 60.03万 - 项目类别:
Continuing Grant
Analytical Aspects of Some Non-Linear Mathematical Models
一些非线性数学模型的分析方面
- 批准号:
9714758 - 财政年份:1997
- 资助金额:
$ 60.03万 - 项目类别:
Continuing Grant
Mathematical Sciences: Non-linear Partial Differential Equations
数学科学:非线性偏微分方程
- 批准号:
9401168 - 财政年份:1994
- 资助金额:
$ 60.03万 - 项目类别:
Continuing Grant
Mathematical Sciences: Park City/IAS Mathematics Institute
数学科学:帕克城/IAS 数学研究所
- 批准号:
9402739 - 财政年份:1994
- 资助金额:
$ 60.03万 - 项目类别:
Standard Grant
相似海外基金
Mechano-geometrical cell interface for generating hiPSC derived higher order gastruloid
用于生成 hiPSC 衍生的高阶原肠胚的机械几何细胞接口
- 批准号:
23K17205 - 财政年份:2023
- 资助金额:
$ 60.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multi-core fiber sensing using geometrical phase nonlinearity of optical polarization
利用光学偏振的几何相位非线性进行多芯光纤传感
- 批准号:
23K04616 - 财政年份:2023
- 资助金额:
$ 60.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of Geometrical Singular Perturbation Theory in Hyperplasticity Accelerated Ratcheting Models
几何奇异摄动理论在超塑性加速棘轮模型中的应用
- 批准号:
2888423 - 财政年份:2023
- 资助金额:
$ 60.03万 - 项目类别:
Studentship
Geometrical structures in mathematical physics
数学物理中的几何结构
- 批准号:
RGPIN-2018-05413 - 财政年份:2022
- 资助金额:
$ 60.03万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Understanding Kirkendall Pore Formation and Evolution: Correlating Compositional, Geometrical, and Thermal Influences
职业:了解柯肯德尔孔隙的形成和演化:关联成分、几何和热影响
- 批准号:
2143334 - 财政年份:2022
- 资助金额:
$ 60.03万 - 项目类别:
Continuing Grant
Metric and planning of reliable robotic manipulation, equivalently measuring both geometrical and mechanical constraints
可靠的机器人操作的度量和规划,相当于测量几何和机械约束
- 批准号:
22H01457 - 财政年份:2022
- 资助金额:
$ 60.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Computational homogenization of soft composite plates and shells toward elucidating high-order geometrical pattern transformation
软复合材料板壳的计算均质化以阐明高阶几何图案变换
- 批准号:
22K14142 - 财政年份:2022
- 资助金额:
$ 60.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An advanced multiphase model for geometrical evolution and anomalous flows
几何演化和反常流动的高级多相模型
- 批准号:
FT210100165 - 财政年份:2022
- 资助金额:
$ 60.03万 - 项目类别:
ARC Future Fellowships
Topological and geometrical aspects of condensed matter systems
凝聚态系统的拓扑和几何方面
- 批准号:
2856645 - 财政年份:2022
- 资助金额:
$ 60.03万 - 项目类别:
Studentship
The geometrical framework of General Relativity and String Theory
广义相对论和弦理论的几何框架
- 批准号:
2758423 - 财政年份:2022
- 资助金额:
$ 60.03万 - 项目类别:
Studentship