Analytical and geometrical properties of non linear diffusion equations

非线性扩散方程的分析和几何性质

基本信息

  • 批准号:
    1500871
  • 负责人:
  • 金额:
    $ 62.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

This research project is focused mainly on aspects of diffusion processes. The mathematical idea of diffusion is an attempt to quantify and model how a species, a fluid, heat, particles, or information spreads out in time due to the effect of pressure (as in particles or populations) or by other neighbor-to-neighbor interaction, as in the case of information dynamics. One of the ways in which diffusion has been described mathematically is through partial differential equations, which model infinitesimal adjacent interactions. With mathematical modeling in fields like biology, finance, and the social sciences, the need has emerged of understanding phenomena where the diffusion process takes into consideration long-range information or interactions; that is the case when particles are transported, information is communicated simultaneously at many scales, organisms communicate by the creation of a chemical potential, or stocks change value in discontinuous ways. The PI will study diverse phenomena related to these processes with long interactions in space and time (memory), such as flows in reservoirs that clog with time, segregation processes that occur at a distance, or models in price formation where there is a gap between buyers and sellers.A first area of research encompasses nonlinear problems involving nonlocality in both space and time. From the stochastic side, the model is the continuous in time random walk equation, which involves Levy walks instead of jumps. From the variational side, there are diverse models for porous medium flows with potential pressures, where the medium is deformed by the flow. These involve study of fully nonlinear equations of nonlocal type that by the nature of their invariant properties parallel equations involving symmetric functions of the Hessian, such as the Monge-Ampere equation. Another area of investigation involves phase transitions and free boundary problems. One group concerns models for segregation of species, optimal partition of a domain by disjoint subdomains optimizing some "shape" value function. Another group deals with the homogenization of fronts in random or periodic media, and a third concerns the regularity of free boundaries for some stationary or evolution problems. The issues described above are universal in the sense that the same paradigm reappears in geometry and analysis, fluid dynamics and material sciences, financial mathematics, and more recently biology and stochastic geometry.
该研究项目主要集中在扩散过程的各个方面。扩散的数学概念是试图量化和建模物质、流体、热量、粒子或信息如何由于压力的影响(如粒子或种群)或其他邻居与邻居的相互作用(如信息动力学)而及时传播。数学上描述扩散的方法之一是通过偏微分方程,它模拟了无穷小的相邻相互作用。 随着生物学、金融学和社会科学等领域的数学建模,出现了理解扩散过程考虑远程信息或相互作用的现象的需要;即粒子被传输,信息在许多尺度上同时通信,生物体通过化学势的创建进行通信,或者股票以不连续的方式改变价值。PI将研究与这些过程相关的各种现象,这些过程在空间和时间(记忆)中具有长时间的相互作用,例如随着时间堵塞的水库中的流动,发生在远处的隔离过程,或买方和卖方之间存在差距的价格形成模型。第一个研究领域包括涉及空间和时间非局部性的非线性问题。从随机方面来看,该模型是时间上连续的随机游走方程,其中包含Levy游走而不是跳跃。从变分的角度来看,有势压力的多孔介质流动有多种模型,其中介质被流动变形。这些涉及研究完全非线性方程的非局部型,其性质的不变性质平行方程涉及对称函数的海森,如蒙赫-安培方程。 另一个研究领域涉及相变和自由边界问题。一组涉及模型的种族隔离,最佳分区的一个域不相交的子域优化一些“形状”的价值函数。另一组涉及均匀化的前在随机或周期性的媒体,第三个关注的规则性的自由边界的一些固定或发展的问题。上述问题是普遍的意义上说,同样的范式再次出现在几何和分析,流体动力学和材料科学,金融数学,以及最近的生物学和随机几何。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luis Caffarelli其他文献

Global C1,α regularity for Monge-Ampère equation and convex envelope
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Luis Caffarelli;Lan Tang;Xu-Jia Wang
  • 通讯作者:
    Xu-Jia Wang

Luis Caffarelli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luis Caffarelli', 18)}}的其他基金

Non-Linear Diffusion Modeling: From Geometry, to Materials, to Social Dynamics
非线性扩散建模:从几何到材料,再到社会动力学
  • 批准号:
    2000041
  • 财政年份:
    2020
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Standard Grant
Current Trends in Analysis and Partial Differential Equations
分析和偏微分方程的当前趋势
  • 批准号:
    1540162
  • 财政年份:
    2015
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Standard Grant
Analytical and geometrical problems involving non linear diffusion processes
涉及非线性扩散过程的分析和几何问题
  • 批准号:
    1160802
  • 财政年份:
    2012
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Emerging issues in the sciences involving non standard diffusion
FRG:协作研究:涉及非标准扩散的科学中的新问题
  • 批准号:
    1065926
  • 财政年份:
    2011
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Standard Grant
Analytical and Geometrical Problems in Non Linear Partial Differential Equations
非线性偏微分方程中的解析和几何问题
  • 批准号:
    0654267
  • 财政年份:
    2007
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Continuing Grant
On the Homogenization of some Free Boundary Problems
一些自由边界问题的齐次化
  • 批准号:
    0456647
  • 财政年份:
    2005
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Standard Grant
Analytical and Geometrical Aspects of Non Linear Partial Differential Equations
非线性偏微分方程的解析和几何方面
  • 批准号:
    0140338
  • 财政年份:
    2002
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Continuing Grant
Analytical Aspects of Some Non-Linear Mathematical Models
一些非线性数学模型的分析方面
  • 批准号:
    9714758
  • 财政年份:
    1997
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Non-linear Partial Differential Equations
数学科学:非线性偏微分方程
  • 批准号:
    9401168
  • 财政年份:
    1994
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Park City/IAS Mathematics Institute
数学科学:帕克城/IAS 数学研究所
  • 批准号:
    9402739
  • 财政年份:
    1994
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Standard Grant

相似海外基金

Ultrasonic study on the physical properties of multipoles due to structural chirality and/or geometrical frustration
由于结构手性和/或几何挫败而对多极物理特性进行超声研究
  • 批准号:
    19K03719
  • 财政年份:
    2019
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Perceiving Function in Geometrical Beauty: Chemical Pressure as a Link between Structure and Properties in Intermetallics
几何美感的感知功能:化学压力作为金属间化合物结构和性能之间的联系
  • 批准号:
    1508496
  • 财政年份:
    2015
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Continuing Grant
ECM geometrical and mechanical properties modulate RTK signaling
ECM 几何和机械特性调制 RTK 信号
  • 批准号:
    9763512
  • 财政年份:
    2015
  • 资助金额:
    $ 62.48万
  • 项目类别:
Bio-electro-mechanical probe station (FT-EM2100 MEMS Probe station) for simultaneous testing of Bio-mechanical, electrical and geometrical properties of cells
生物机电探针台(FT-EM2100 MEMS探针台),用于同时测试细胞的生物机械、电气和几何特性
  • 批准号:
    472470-2015
  • 财政年份:
    2014
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Effect of geometrical distribution of sub-grain boundaries on creep properties of Ni-based superalloys
亚晶界几何分布对镍基高温合金蠕变性能的影响
  • 批准号:
    24656411
  • 财政年份:
    2012
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Geometrical and Material Effects on Sensory properties of Confectionery Wafers
几何和材料对糖果威化饼感官特性的影响
  • 批准号:
    BB/K501517/1
  • 财政年份:
    2012
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Training Grant
Study of dynamical and geometrical properties of maps on separable metric spaces
可分离度量空间上映射的动力学和几何性质的研究
  • 批准号:
    19540063
  • 财政年份:
    2007
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Correlation of geometrical and electronic properties in metallic nanowires
金属纳米线几何和电子特性的相关性
  • 批准号:
    5428992
  • 财政年份:
    2004
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Priority Programmes
The relation between the quantitative properties of the solutions of partial differential equations and the geometrical structures of their characteristics
偏微分方程解的定量性质与其特征的几何结构之间的关系
  • 批准号:
    12640175
  • 财政年份:
    2000
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Geometrical properties of bundles using transfer maps and it's application
利用传递图研究束的几何性质及其应用
  • 批准号:
    10640080
  • 财政年份:
    1998
  • 资助金额:
    $ 62.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了