Non-Linear Diffusion Modeling: From Geometry, to Materials, to Social Dynamics

非线性扩散建模:从几何到材料,再到社会动力学

基本信息

  • 批准号:
    2000041
  • 负责人:
  • 金额:
    $ 28.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The principal investigator (PI) will investigate a series of problems in mathematics with applications to diverse areas of Science. A good number of the issues the PI plans to address are a natural continuation of problems he has explored recently that keep progressing and diffusing through a wider mathematical community. The questions to be studied have a certain universality in the sense that the same paradigm reappears from geometry and analysis, to fluid dynamics and material sciences, to financial mathematics and, more recently, biology and stochastic geometry. The project provides research training opportunities for graduate students and postdoctoral researchers.The first project concerns compressible flow (for instance, a gas) in porous media, in particular when the flow has a "history" that clogs with time the porous media (the Caputo diffusion model). Some important aspects of the Caputo diffusion model are being studied by the PI and an advanced graduate student, in particular when it occurs through two media with different porosity (transmission condition). Related mathematical phenomena concern the saline flow through semipermeable membranes (where the salt can flow only in one direction through the membrane). Another case where the flow is induced by global considerations concerns the quasi-geostrophic equation: this equation describes the evolution of the temperature on the surface of the ocean, and here temperature is influenced at a distance though the atmosphere. In collaboration with a graduate student the PI is working on the time evolution of this process in the land-sea interphase. Another interesting problem considered is concerned with "overlapping" interactions. An example is the structure of pricing for buying vs selling of goods. There is an area of "values" of the underlying good where the two prices diverge, and one where they come together. Mathematically, these are very interesting problems concerned with the stability of the configuration, in particular for the edge dividing one behavior from the other in a nonlinear way. In a different area, the PI is studying issues of segregation and predator-prey models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
首席研究员(PI)将研究一系列数学问题,并将其应用于不同的科学领域。PI计划解决的许多问题是他最近探索的问题的自然延续,这些问题在更广泛的数学社区中不断发展和扩散。要研究的问题具有一定的普遍性,因为从几何和分析、流体动力学和材料科学、金融数学以及最近的生物学和随机几何中都出现了相同的范式。本项目为研究生和博士后提供科研培训机会。第一个项目涉及多孔介质中的可压缩流动(例如,气体),特别是当流动具有随时间阻塞多孔介质的“历史”时(卡普托扩散模型)。PI和一名高级研究生正在研究Caputo扩散模型的一些重要方面,特别是当它发生在两种不同孔隙率(传输条件)的介质中。相关的数学现象涉及到盐通过半透膜的流动(在这种情况下盐只能沿一个方向流过膜)。另一种由全局考虑引起的流动与准地转方程有关:该方程描述了海洋表面温度的演变,在这里温度通过大气受到一定距离的影响。在与一名研究生的合作下,PI正在研究这一过程在陆海间期的时间演变。另一个有趣的问题与“重叠”交互有关。一个例子是商品买卖的定价结构。在一个潜在商品的“价值”区域,这两种价格是不同的,而在另一个区域,它们是一致的。从数学上讲,这些都是非常有趣的问题,与构型的稳定性有关,特别是对于以非线性方式将一种行为与另一种行为分开的边缘。在另一个领域,PI正在研究隔离问题和捕食者-猎物模型。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Existence of weak solutions to a continuity equation with space time nonlocal Darcy law
时空非局部达西定律连续性方程弱解的存在性
Fully nonlinear integro-differential equations with deforming kernels
具有变形核的完全非线性积分微分方程
Optimal Regularity and Structure of the Free Boundary for Minimizers in Cohesive Zone Models.
内聚区域模型中最小化器的自由边界的最优规则性和结构。
The leading edge of a free boundary interacting with a line of fast diffusion
自由边界的前缘与快速扩散线相互作用
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. A. Caffarelli, J.M. Roquejoffre
  • 通讯作者:
    L. A. Caffarelli, J.M. Roquejoffre
The shape of a free boundary driven by a line of fast diffusion
由快速扩散线驱动的自由边界的形状
  • DOI:
    10.3934/mine.2021010
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1
  • 作者:
    A. Caffarelli, Luis;Roquejoffre, Jean-Michel
  • 通讯作者:
    Roquejoffre, Jean-Michel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luis Caffarelli其他文献

Global C1,α regularity for Monge-Ampère equation and convex envelope
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Luis Caffarelli;Lan Tang;Xu-Jia Wang
  • 通讯作者:
    Xu-Jia Wang

Luis Caffarelli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luis Caffarelli', 18)}}的其他基金

Analytical and geometrical properties of non linear diffusion equations
非线性扩散方程的分析和几何性质
  • 批准号:
    1500871
  • 财政年份:
    2015
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
Current Trends in Analysis and Partial Differential Equations
分析和偏微分方程的当前趋势
  • 批准号:
    1540162
  • 财政年份:
    2015
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
Analytical and geometrical problems involving non linear diffusion processes
涉及非线性扩散过程的分析和几何问题
  • 批准号:
    1160802
  • 财政年份:
    2012
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Emerging issues in the sciences involving non standard diffusion
FRG:协作研究:涉及非标准扩散的科学中的新问题
  • 批准号:
    1065926
  • 财政年份:
    2011
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
Analytical and Geometrical Problems in Non Linear Partial Differential Equations
非线性偏微分方程中的解析和几何问题
  • 批准号:
    0654267
  • 财政年份:
    2007
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
On the Homogenization of some Free Boundary Problems
一些自由边界问题的齐次化
  • 批准号:
    0456647
  • 财政年份:
    2005
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
Analytical and Geometrical Aspects of Non Linear Partial Differential Equations
非线性偏微分方程的解析和几何方面
  • 批准号:
    0140338
  • 财政年份:
    2002
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
Analytical Aspects of Some Non-Linear Mathematical Models
一些非线性数学模型的分析方面
  • 批准号:
    9714758
  • 财政年份:
    1997
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Non-linear Partial Differential Equations
数学科学:非线性偏微分方程
  • 批准号:
    9401168
  • 财政年份:
    1994
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Park City/IAS Mathematics Institute
数学科学:帕克城/IAS 数学研究所
  • 批准号:
    9402739
  • 财政年份:
    1994
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

On the structure analysis of measure value solutions and singular sets for non-linear drift diffusion systems
非线性漂移扩散系统测值解与奇异集的结构分析
  • 批准号:
    19K03561
  • 财政年份:
    2019
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analytical and geometrical properties of non linear diffusion equations
非线性扩散方程的分析和几何性质
  • 批准号:
    1500871
  • 财政年份:
    2015
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
Analytical and geometrical problems involving non linear diffusion processes
涉及非线性扩散过程的分析和几何问题
  • 批准号:
    1160802
  • 财政年份:
    2012
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
Computation of anisotropic non-linear coupled diffusion of oxygen glucose and lactic acid in human inverterbrae disc
人体倒椎间盘中氧、葡萄糖和乳酸各向异性非线性耦合扩散的计算
  • 批准号:
    378730-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
THEORY OF NERVE PULSE TRANSFER BASED ON NON-LINEAR DIFFUSION OF K
基于K非线性扩散的神经脉冲传递理论
  • 批准号:
    8168031
  • 财政年份:
    2010
  • 资助金额:
    $ 28.04万
  • 项目类别:
Computation of anisotropic non-linear coupled diffusion of oxygen glucose and lactic acid in human inverterbrae disc
人体倒椎间盘中氧、葡萄糖和乳酸各向异性非线性耦合扩散的计算
  • 批准号:
    378730-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Non-linear diffusion during phase separation and symplectite formation in alkali feldspar: an experimental and modelling approach (TP8)
碱长石相分离和辛辉石形成过程中的非线性扩散:实验和建模方法 (TP8)
  • 批准号:
    33871937
  • 财政年份:
    2007
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Research Units
Study on disordered structure and ionic diffusion in amorphous solids with non linear ultrasonic resonance
非线性超声共振研究非晶固体中的无序结构和离子扩散
  • 批准号:
    18540321
  • 财政年份:
    2006
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Novel electrochemical Nanofabrication Processes through Controlling Non-linear Diffusion
通过控制非线性扩散开发新型电化学纳米加工工艺
  • 批准号:
    15560633
  • 财政年份:
    2003
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On behaviors of solutions in non-linear reaction-diffusion systems
非线性反应扩散系统中解的行为
  • 批准号:
    13640141
  • 财政年份:
    2001
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了